References

In accordance with the American Psychological Association (APA) Style, 7th edition.

Allaire, J. J., Teague, C., Xie, Y., & Dervieux, C. (n.d.). Quarto [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.5960048
Augusiak, J., Van den Brink, P. J., & Grimm, V. (2014). Merging validation and evaluation of ecological models to “evaludation”: A review of terminology and a practical approach. Ecological Modelling, 280, 117–128. https://doi.org/10.1016/j.ecolmodel.2013.11.009
Azevedo, T. R. de, Costa Junior, C., Brandão Junior, A., Cremer, M. dos S., Piatto, M., Tsai, D. S., Barreto, P., Martins, H., Sales, M., Galuchi, T., Rodrigues, A., Morgado, R., Ferreira, A. L., Barcellos e Silva, F., Viscondi, G. de F., dos Santos, K. C., Cunha, K. B. da, Manetti, A., Coluna, I. M. E., … Kishinami, R. (2018). SEEG initiative estimates of Brazilian greenhouse gas emissions from 1970 to 2015. Scientific Data, 5(1), 180045. https://doi.org/10.1038/sdata.2018.45
Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In R. L. Launer & G. N. Wilkinson (Eds.), Robustness in statistics (pp. 201–236). Academic Press. https://doi.org/10.1016/B978-0-12-438150-6.50018-2
Grimm, V. (2020). The ODD protocol: An update with guidance to support wider and more consistent use. Ecological Modelling, 428, 109105. https://doi.org/10.1016/j.ecolmodel.2020.109105
Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston, A. S. A., Liu, C., Martin, B. T., Meli, M., Radchuk, V., Thorbek, P., & Railsback, S. F. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129–139. https://doi.org/10.1016/j.ecolmodel.2014.01.018
Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019
Instituto Brasileiro de Geografia e Estatística. (2020). Pesquisa de orçamentos familiares: 2017-2018 : avaliação nutricional da disponibilidade domiciliar de alimentos no Brasil (p. 61). IBGE. https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101704
Landau, W. (2021). The targets R package: A dynamic Make-like function-oriented pipeline toolkit for reproducibility and high-performance computing. Journal of Open Source Software, 6(57), 2959. https://doi.org/10.21105/joss.02959
Marwick, B., Boettiger, C., & Mullen, L. (2018). Packaging data analytical work reproducibly using R (and friends). The American Statistician, 72(1), 80–88. https://doi.org/10.1080/00031305.2017.1375986
Mitchell, M. (2013). Introduction to complexity [Online course]. https://www.complexityexplorer.org/courses/
Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., Schlüter, M., Schulze, J., Weise, H., & Schwarz, N. (2013). Describing human decisions in agent-based models – ODD + D, an extension of the ODD protocol. Environmental Modelling & Software, 48, 37–48. https://doi.org/10.1016/j.envsoft.2013.06.003
Pickering, C., & Byrne, J. (2014). The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. Higher Education Research & Development, 33(3), 534–548. https://doi.org/10.1080/07294360.2013.841651
R Core Team. (2024). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org
Salecker, J., Sciaini, M., Meyer, K. M., & Wiegand, K. (2019). The nlrx r package: A next-generation framework for reproducible NetLogo model analyses. Methods in Ecology and Evolution, 10(11), 1854–1863. https://doi.org/10.1111/2041-210X.13286
Schmolke, A., Thorbek, P., DeAngelis, D. L., & Grimm, V. (2010). Ecological models supporting environmental decision making: A strategy for the future. Trends in Ecology & Evolution, 25(8), 479–486. https://doi.org/10.1016/j.tree.2010.05.001
Swinburn, B. A., Kraak, V. I., Allender, S., Atkins, V. J., Baker, P. I., Bogard, J. R., Brinsden, H., Calvillo, A., Schutter, O. D., Devarajan, R., Ezzati, M., Friel, S., Goenka, S., Hammond, R. A., Hastings, G., Hawkes, C., Herrero, M., Hovmand, P. S., Howden, M., … Dietz, W. H. (2019). The global syndemic of obesity, undernutrition, and climate change: The lancet commission report. The Lancet, 393(10173), 791–846. https://doi.org/10.1016/S0140-6736(18)32822-8
United Nations Children’s Fund, World Health Organization, & International Bank for Reconstruction and Development. (2023). Levels and trends in child malnutrition: UNICEF/WHO/ World Bank Group joint child malnutrition estimates: Key findings of the 2023 edition (p. 32). UNICEF-WHO-WB Joint Child Malnutrition Estimates Inter-Agency Group. https://www.who.int/publications/i/item/9789240073791
Universidade Federal do Rio de Janeiro. (2022). Estado nutricional antropométrico da criança e da mãe: prevalência de indicadores antropométrico de crianças brasileiras menores de 5 anos de idade e suas mães biológicas: ENANI 2019 (7; p. 96). UFRJ. https://enani.nutricao.ufrj.br/index.php/relatorios
Ushey, K., & Wickham, H. (n.d.). Renv: Project environments [Computer software]. https://doi.org/10.32614/CRAN.package.renv
Wilensky, U. (1999). NetLogo [Computer software]. Center for Connected Learning and Computer-Based Modeling, Northwestern University. http://ccl.northwestern.edu/netlogo/