References
In accordance with the American Psychological Association (APA) Style, 7th edition.
Allaire, J. J., Teague, C., Xie, Y., & Dervieux, C. (n.d.).
Quarto [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.5960048
Augusiak, J., Van den Brink, P. J., & Grimm, V. (2014). Merging
validation and evaluation of ecological models to
“evaludation”: A review of terminology and a
practical approach. Ecological Modelling, 280,
117–128. https://doi.org/10.1016/j.ecolmodel.2013.11.009
Azevedo, T. R. de, Costa Junior, C., Brandão Junior, A., Cremer, M. dos
S., Piatto, M., Tsai, D. S., Barreto, P., Martins, H., Sales, M.,
Galuchi, T., Rodrigues, A., Morgado, R., Ferreira, A. L., Barcellos e
Silva, F., Viscondi, G. de F., dos Santos, K. C., Cunha, K. B. da,
Manetti, A., Coluna, I. M. E., … Kishinami, R. (2018). SEEG
initiative estimates of Brazilian greenhouse gas emissions
from 1970 to 2015. Scientific Data, 5(1), 180045. https://doi.org/10.1038/sdata.2018.45
Box, G. E. P. (1979). Robustness in the strategy of scientific model
building. In R. L. Launer & G. N. Wilkinson (Eds.), Robustness
in statistics (pp. 201–236). Academic Press. https://doi.org/10.1016/B978-0-12-438150-6.50018-2
Grimm, V. (2020). The ODD protocol: An update with guidance
to support wider and more consistent use. Ecological Modelling,
428, 109105. https://doi.org/10.1016/j.ecolmodel.2020.109105
Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston,
A. S. A., Liu, C., Martin, B. T., Meli, M., Radchuk, V., Thorbek, P.,
& Railsback, S. F. (2014). Towards better modelling and decision
support: Documenting model development, testing, and analysis using
TRACE. Ecological Modelling, 280,
129–139. https://doi.org/10.1016/j.ecolmodel.2014.01.018
Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J.,
& Railsback, S. F. (2010). The ODD protocol: A review
and first update. Ecological Modelling, 221(23),
2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019
Instituto Brasileiro de Geografia e Estatística. (2020). Pesquisa de
orçamentos familiares: 2017-2018 : avaliação nutricional da
disponibilidade domiciliar de alimentos no Brasil (p. 61).
IBGE. https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101704
Landau, W. (2021). The targets R package: A dynamic Make-like function-oriented pipeline toolkit for
reproducibility and high-performance computing. Journal of Open
Source Software, 6(57), 2959. https://doi.org/10.21105/joss.02959
Marwick, B., Boettiger, C., & Mullen, L. (2018). Packaging data
analytical work reproducibly using R (and friends). The
American Statistician, 72(1), 80–88. https://doi.org/10.1080/00031305.2017.1375986
Mitchell, M. (2013). Introduction to complexity [Online
course]. https://www.complexityexplorer.org/courses/
Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin,
R., Schlüter, M., Schulze, J., Weise, H., & Schwarz, N. (2013).
Describing human decisions in agent-based models –
ODD + D, an extension of the ODD
protocol. Environmental Modelling & Software, 48,
37–48. https://doi.org/10.1016/j.envsoft.2013.06.003
Pickering, C., & Byrne, J. (2014). The benefits of publishing
systematic quantitative literature reviews for PhD
candidates and other early-career researchers. Higher Education
Research & Development, 33(3), 534–548. https://doi.org/10.1080/07294360.2013.841651
R Core Team. (2024). R: A language and environment for statistical
computing [Computer software]. R Foundation for Statistical
Computing. https://www.R-project.org
Salecker, J., Sciaini, M., Meyer, K. M., & Wiegand, K. (2019). The
nlrx r package: A next-generation framework for reproducible
NetLogo model analyses. Methods in Ecology and
Evolution, 10(11), 1854–1863. https://doi.org/10.1111/2041-210X.13286
Schmolke, A., Thorbek, P., DeAngelis, D. L., & Grimm, V. (2010).
Ecological models supporting environmental decision making: A strategy
for the future. Trends in Ecology & Evolution,
25(8), 479–486. https://doi.org/10.1016/j.tree.2010.05.001
Swinburn, B. A., Kraak, V. I., Allender, S., Atkins, V. J., Baker, P.
I., Bogard, J. R., Brinsden, H., Calvillo, A., Schutter, O. D.,
Devarajan, R., Ezzati, M., Friel, S., Goenka, S., Hammond, R. A.,
Hastings, G., Hawkes, C., Herrero, M., Hovmand, P. S., Howden, M., …
Dietz, W. H. (2019). The global syndemic of obesity, undernutrition, and
climate change: The lancet commission report. The Lancet,
393(10173), 791–846. https://doi.org/10.1016/S0140-6736(18)32822-8
United Nations Children’s Fund, World Health Organization, &
International Bank for Reconstruction and Development. (2023).
Levels and trends in child malnutrition:
UNICEF/WHO/ World Bank Group
joint child malnutrition estimates: Key findings of the 2023
edition (p. 32). UNICEF-WHO-WB Joint Child Malnutrition
Estimates Inter-Agency Group. https://www.who.int/publications/i/item/9789240073791
Universidade Federal do Rio de Janeiro. (2022). Estado nutricional
antropométrico da criança e da mãe: prevalência de indicadores
antropométrico de crianças brasileiras menores de 5 anos de idade e suas
mães biológicas: ENANI 2019 (7; p. 96). UFRJ. https://enani.nutricao.ufrj.br/index.php/relatorios
Ushey, K., & Wickham, H. (n.d.). Renv: Project environments
[Computer software]. https://doi.org/10.32614/CRAN.package.renv
Wilensky, U. (1999). NetLogo [Computer software].
Center for Connected Learning and Computer-Based Modeling,
Northwestern University. http://ccl.northwestern.edu/netlogo/