Exploring potential associations between childhood undernutrition and the Standardized Precipitation Evapotranspiration Index (SPEI) in Brazilian municipalities (2008–2019)
Overview
This report explores potential associations between childhood undernutrition and the Standardized Precipitation Evapotranspiration Index (SPEI) in Brazilian municipalities (2008–2019). It is part of the Sustentarea Research and Extension Group’s project titled Global syndemic: The impact of anthropogenic climate change on the health and nutrition of children under five years old served by Brazil’s public health system (SUS).
Please note that this report is designed to support decision-making and may not include all the details of the analysis.
Any additional analyses or updates will be incorporated into the report in future revisions, if necessary.
Question
This analysis seeks to address the following question:
Does the Standardized Precipitation Evapotranspiration Index (SPEI) significantly improve the prediction of childhood undernutrition in Brazilian municipalities?
Methods
Approach and Procedure Method
This study employed the hypothetical-deductive method, also known as the method of conjecture and refutation (Popper, 1979, p. 164), as its problem-solving approach. Procedurally, it applied an enhanced version of Null Hypothesis Significance Testing (NHST), grounded on the original ideas of Neyman-Pearson framework for data testing (Neyman & Pearson, 1928a, 1928b; Perezgonzalez, 2015).
The analysis was conducted using Generalized Additive Models (GAMs) to model and control for potential effects, alongside visual inspections of the data. Results are also presented for each cluster of the Revised Multidimensional Index for Sustainable Food Systems (MISFS-R) (Carvalho et al., 2021; Norde et al., 2023).
Source of Data/Information
The data used in this analysis have as sources:
- The Brazilian Institute of Geography and Statistics (IBGE) Automatic Retrieval System (SIDRA), for data on GDP per capita and the Gini Index (Instituto Brasileiro de Geografia e Estatística, n.d.-b, n.d.-c).
- Brazil’s Food and Nutrition Surveillance System (SISVAN), for data on malnutrition (Sistema de Vigilância Alimentar e Nutricional, n.d.).
- WorldClim, for data on bioclimatic variables, which allowed us to calculate the Standardised Precipitation Evapotranspiration Index (SPEI) for municipalities in Brazil (Fick & Hijmans, 2017; Harris et al., 2020).
Some data are imported directly from the source, while others rely on external data files available in the data directory of the code repository.
Data Wrangling
Data wrangling and analysis followed the data science framework outlined by Wickham et al. (2023), as illustrated in Figure 1. All processes were made using the R programming language (R Core Team, n.d.), RStudio IDE (Posit Team, n.d.), and several R packages.
The tidyverse and rOpenSci peer-reviewed package ecosystem and other R packages adherents of the tidy tools manifesto (Wickham et al., 2023) were prioritized. All processes were made in order to provide result reproducibility and to be in accordance with the FAIR principles (Wilkinson et al., 2016).
Source: Reproduced from Wickham et al. (2023).
The Tidyverse code style guide and design principles were followed to ensure consistency and enhance readability.
All the analyses are 100% reproducible and can be run again at any time. See the README file in the code repository to learn how to run them.
Model Parameters
The models were built using the mgcv
R package (Wood, n.d.). Since the dependent variables are relative frequencies (continuous), we used the beta distribution family (Figure 2) with a logit link function (Equation 1)(Figure 3)(see Casella & Berger (2002)[p. 591). The REML (Restricted Maximum Likelihood) method was used to estimate the smoothing parameters.
\[ \text{logit}(P) = \ln\left(\frac{P}{1 - P}\right) = \beta_{0} + \beta_{1} X_{1} + \cdots + \beta_{k} X_{k} \tag{1}\]
Code
list <-
dplyr::tibble(
alpha = c(0.5, 5, 1, 2, 2),
beta = c(0.5, 1, 3, 2, 5),
color = c(
"a = b == 0.5",
"a = 5, b = 1",
"a = 1, b = 3",
"a = 2, b = 2",
"a = 2, b = 5"
)
) %>%
split(., seq(nrow(.)))
plot <-
ggplot2::ggplot(NULL, ggplot2::aes(x = x, color = color)) +
ggplot2::labs(
x = "x",
y = "Probability Density Function (PDF)",
color = "Parameters"
) +
ggplot2::scale_y_continuous(limits = c(0, 2.5))+
scale_color_brand_d()
for (i in list) {
plot <-
plot +
ggplot2::stat_function(
data = dplyr::tibble(x = 0:1, color = factor(i$color)),
fun = stats::dbeta,
args = list(shape1 = i$alpha, shape2 = i$beta),
n = 1000,
linewidth = 1.5
)
}
plot |> print() |> rutils::shush()
Source: Created by the authors.
Code
ggplot2::ggplot() +
ggplot2::stat_function(
data = dplyr::tibble(x = 0:1, color = factor(i$color)),
fun = stats::qlogis,
args = list(location = 0, scale = 1, log = FALSE),
n = 1000,
linewidth = 1.5,
color = get_brand_color("red")
) +
ggplot2::geom_hline(
yintercept = 0,
linewidth = 0.25,
linetype = "dashed",
color = get_brand_color("grey")
) +
ggplot2::geom_vline(
xintercept = 0.5,
linewidth = 0.25,
linetype = "dashed",
color = get_brand_color("grey")
) +
ggplot2::lims(
x = c(0, 1),
y = c(-6, 6)
) +
ggplot2::labs(
x = "Probability",
y = "Logit(0,1)"
)
Hypothesis Testing
We tested whether SPEI significantly improves model fit when predicting MBEPR & BEIPR (stunting) and MAPER & MPEPR (wasting) with nested models. We compared a restricted model (excluding SPEI) with a full model (including SPEI). To ensure practical significance, we applied a Minimum Effect Size (MES) criterion, following the original Neyman-Pearson framework for hypothesis testing (Neyman & Pearson, 1928a, 1928b; Perezgonzalez, 2015).
The MES was set at Cohen’s threshold for small effects (\(f^2 = 0.02\), equivalent to \(\text{R}^2 = 0.01960784\)). Thus, SPEI was considered significant only if its inclusion accounted for at least \(1.960784\%\) of the variance in the dependent variable.
The test was structured as follows:
Null hypothesis (\(\text{H}_{0}\)): Adding SPEI does not meaningfully improve the model’s fit, indicated by a negligible change in the adjusted \(\text{R}^{2}\) or a non-significant F-test (with a Type I error probability (\(\alpha\)) of \(0.05\)).
Alternative Hypothesis (\(\text{H}_{a}\)): Adding SPEI meaningfully improves the model’s fit, indicated by an increase in the adjusted \(\text{R}^{2}\) exceeding the MES and a significant F-test (with \(\alpha < 0.05\)).
Formally:
\[ \begin{cases} \text{H}_{0}: \Delta \ \text{Adjusted} \ \text{R}^{2} \leq \text{MES} \quad \text{or} \quad \text{F-test is not significant} \ (\alpha \geq 0.05) \\ \text{H}_{a}: \Delta \ \text{Adjusted} \ \text{R}^{2} > \text{MES} \quad \text{and} \quad \text{F-test is significant} \ (\alpha < 0.05) \end{cases} \]
Where:
\[ \Delta \ \text{Adjusted} \ \text{R}^{2} = \text{Adjusted} \ \text{R}^{2}_{\text{full}} - \text{Adjusted} \ \text{R}^{2}_{\text{restricted}} \]
The restricted model is the same as the first model presented in this document, minus the SPEI variable: ~ te(gini_index, gdp_per_capita)
+ s(year)
(Continuous year
).
Interpretation of Results
Standardized Precipitation Evapotranspiration Index (SPEI)
Since the original SPEI authors (Vicente-Serrano et al., 2010) did not establish definitive thresholds for SPEI values and their corresponding drought conditions, we adopt the benchmark values provided by Mehr et al. (2020) (Table 1).
Classification | SPI Threshold | SPEI Threshold |
---|---|---|
Extremely wet | 2.0 ≤ SPI | 1.83 ≤ SPEI |
Severely wet | 2.0 > SPI ≥ 1.5 | 1.82 > SPEI ≥ 1.43 |
Moderately wet | 1.49 > SPI ≥ 1.0 | 1.42 > SPEI ≥ 1.0 |
Near normal | -1.0 ≤ SPI ≤ 1.0 | -1.0 ≤ SPEI ≤ 1.0 |
Moderate drought (MoD) | -1.49 ≤ SPI < -1.0 | -1.42 ≤ SPEI < -1.0 |
Severe drought (SD) | -2.0 ≤ SPI < -1.5 | -1.82 ≤ SPEI < -1.43 |
Extreme drought (ED) | SPI < -2.0 | SPEI < -1.83 |
Source: Reproduced from Mehr et al. (2020).
Revised Multidimensional Index for Sustainable Food Systems (MISFS-R)
Results are also presented for each cluster of the Revised Multidimensional Index for Sustainable Food Systems (MISFS-R) (Figure 4).
The MISFS is a tool designed to assess the sustainability of food systems at a subnational level in Brazil, incorporating local behaviors and practices. The MISFS-R is a revised version that introduces new indicators and a refined methodology for calculating the index (Figure 4). For more details, see Carvalho et al. (2021) and Norde et al. (2023).
Source: Reproduced from Norde et al. (2023).
Pratical Significance
To ensure practical significance, the adjusted \(\text{R}^2\) of the models are analysed for their effect sizes considering a confidence interval of \(95\%\). We use Cohen (1988) benchmark for interpretation.
A \(\text{R}^2\) less than \(\approx 0.0196\) is considered negligeble.
SMALL EFFECT SIZE: \(f^2 = .02\). Translated into \(\text{R}^{2}\) or partial \(\text{R}^{2}\) for Case 1, this gives \(.02 / (1 + .02) = .0196\). We thus define a small effect as one that accounts for 2% of the \(\text{Y}\) variance (in contrast with 1% for \(r\)), and translate to an \(\text{R} = \sqrt{0196} = .14\) (compared to .10 for \(r\)). This is a modest enough amount, just barely escaping triviality and (alas!) all too frequently in practice represents the true order of magnitude of the effect being tested (Cohen, 1988, p. 413).
[…] in many circumstances, all that is intended by “proving” the null hypothesis is that the ES [Effect Size] is not necessarily zero but small enough to be negligible […]. (Cohen, 1988, p. 461).
Setting the Enviroment
Code
library(beepr)
library(broom)
library(cli)
library(clipr)
library(colorspace)
library(dplyr)
library(effectsize)
library(GGally)
library(geobr)
library(ggplot2)
library(ggspatial)
library(glmmTMB)
library(here)
library(janitor)
library(lme4)
library(lubridate)
library(lubritime) # github.com/danielvartan/lubritime
library(magrittr)
library(mgcv)
library(mgcViz)
library(MuMIn)
library(pal) # gitlab.com/rpkg.dev/pal
library(patchwork)
library(performance)
library(polyglotr)
library(prettycheck) # github.com/danielvartan/prettycheck
library(psychometric)
library(purrr)
library(r2glmm)
library(ragg)
library(RColorBrewer)
library(readr)
library(readxl)
library(rutils) # github.com/danielvartan/rutils
library(sidrar)
library(stats)
library(stringr)
library(summarytools)
library(tidyr)
Code
source(here::here("R", "cohens_f_squared.R"))
source(here::here("R", "get_and_aggregate_sidra_by_year.R"))
source(here::here("R", "gam_misfs.R"))
source(here::here("R", "plot_brazil.R"))
source(here::here("R", "plot_dist.R"))
source(here::here("R", "plot_gam.R"))
source(here::here("R", "plot_ggally.R"))
source(here::here("R", "summarise_coefs.R"))
source(here::here("R", "summarise_r2.R"))
source(here::here("R", "tabset_panel_brazil_municipality.R"))
source(here::here("R", "tabset_panel_gam.R"))
source(here::here("R", "tabset_panel_gam_by_misfs.R"))
source(here::here("R", "tabset_panel_var_distribution.R"))
source(here::here("R", "tabset_panel_var_distribution_by_misfs.R"))
source(here::here("R", "utils.R"))
source(here::here("R", "utils-plots.R"))
Importing and Tidying the Data
Nutrition Data
Based on SISVAN Nutritional Status dataset (Sistema de Vigilância Alimentar e Nutricional, n.d.).
Code
nutrition_data <-
here::here("data", "Banco_dados_malnutritio_clima - Adaptado.csv") |>
readr::read_csv(col_types = readr::cols(.default = "c")) |>
janitor::clean_names() |>
dplyr::rename(
year = ano,
municipality_code = code_muni,
sisvan_cover = cobrs,
number_of_children = n_ao_de_criana_as_municipio_x,
n_mbepr = muito_baixa_e_i_n_x,
n_beipr = baixa_e_i_n_x,
n_maper = magreza_acentuada_p_e_n_x,
n_mpepr = magreza_p_e_n_x
) |>
dplyr::select(
year, municipality_code, misf, number_of_children, sisvan_cover,
n_mbepr, n_beipr, n_maper, n_mpepr
) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::all_of(
c("number_of_children", "n_mbepr", "n_beipr", "n_maper", "n_mpepr")
),
.fns = ~
dplyr::case_when(
!(as.numeric(.x) %% 1 == 0) ~ stringr::str_remove(.x, "\\."),
TRUE ~ .x
) |>
as.integer()
)
) |>
dplyr::mutate(
# year = as.integer(year),
year =
year |>
factor(
levels = year |> unique() |> sort(),
ordered = TRUE
),
municipality_code = as.integer(municipality_code),
misf = factor(misf, levels = c("A", "B", "C", "D"), ordered = FALSE),
sisvan_cover = as.numeric(sisvan_cover),
mbepr = n_mbepr,
beipr = n_beipr,
n_mbepr_beipr = n_mbepr + n_beipr,
mbepr_beipr = n_mbepr_beipr,
maper = n_maper,
mpepr = n_mpepr,
n_maper_mpepr = n_maper + n_mpepr,
maper_mpepr = n_maper_mpepr
) |>
dplyr::filter(
dplyr::between(sisvan_cover, 0, 1),
number_of_children >= 0,
number_of_children > n_mbepr,
number_of_children > n_beipr,
number_of_children > mbepr_beipr,
number_of_children > n_maper,
number_of_children > n_mpepr,
number_of_children > maper_mpepr
) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::all_of(
c("mbepr", "beipr", "mbepr_beipr", "maper", "mpepr", "maper_mpepr")
),
.fns = ~
.x %>%
`/`(number_of_children * sisvan_cover)
),
dplyr::across(
.cols = dplyr::all_of(
c("mbepr", "beipr", "mbepr_beipr", "maper", "mpepr", "maper_mpepr")
),
.fns = ~ pmax(0.00001, pmin(.x, 0.99999))
)
) |>
dplyr::select(
year, municipality_code, misf, number_of_children, sisvan_cover,
n_mbepr, mbepr, n_beipr, beipr, n_mbepr_beipr, mbepr_beipr,
n_maper, maper, n_mpepr, mpepr, n_maper_mpepr, maper_mpepr
)
GDP Per Capita Data
Source: IBGE-SIDRA Table 5938 – Gross domestic product at current prices, taxes net of subsidies on products at current prices, and gross value added at current prices, total and by economic activity, and their respective shares - Reference year 2010 (Instituto Brasileiro de Geografia e Estatística, n.d.-b).
Source: IBGE-SIDRA Table 6579 – Estimated resident population (Instituto Brasileiro de Geografia e Estatística, n.d.-c).
Code
gdp_data <-
ibge_table_5938 |>
dplyr::left_join(
ibge_table_6579,
by = c("year", "municipality_code")
) |>
dplyr::select(year, municipality_code, municipality.x, value.x, value.y) |>
dplyr::rename(
gdp = value.x,
population = value.y,
municipality = municipality.x
) |>
dplyr::filter(gdp >= 0, population >= 0) |>
dplyr::mutate(
# year = as.integer(year),
year =
year |>
factor(
levels = year |> unique() |> sort(),
ordered = TRUE
),
gdp = gdp * 1000,
gdp_per_capita = gdp / population,
municipality_code = municipality_code |> as.integer()
)
Gini Index Data
The Brazilian Institute of Geography and Statistics (IBGE) Automatic Retrieval System (SIDRA) provides GINI data by municipality only for the year 1991 (Table 115) (Instituto Brasileiro de Geografia e Estatística, n.d.-a). However, we found data processed by the Institute for Applied Economic Research (IPEA), which had access to census data for the years 2000 and 2010 (Instituto Brasileiro de Geografia e Estatística et al., n.d.).
Source: IBGE/IPEA – Gini Index of per capita household income by municipality: Period: 1991, 2000, and 2010 (Instituto Brasileiro de Geografia e Estatística, n.d.-c).
Code
gini_data <-
"http://tabnet.datasus.gov.br/cgi/ibge/censo/bases/ginibr.csv" |>
readr::read_delim(
delim = ";",
col_names = FALSE,
col_types = readr::cols(.default = "c"),
# locale = readr::locale(decimal_mark = ","),
trim_ws = TRUE,
skip = 3
) |>
dplyr::rename_with(~ c("municipality", "x1991", "x2000", "x2010")) |>
dplyr::slice(1:5565) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::everything(),
.fns = ~ iconv(.x, from = "latin1", to = "UTF-8")
),
dplyr::across(
.cols = dplyr::starts_with("x"),
.fns = ~ dplyr::case_when(
.x == "..." ~ NA,
TRUE ~ .x |> stringr::str_replace_all(",", ".")
)
),
dplyr::across(
.cols = dplyr::starts_with("x"),
.fns = as.numeric
)
) |>
tidyr::pivot_longer(
cols = starts_with("x"),
names_to = "year",
values_to = "gini_index"
) |>
dplyr::mutate(
year = year |> stringr::str_remove("x") |> as.integer(),
municipality_code =
municipality |>
stringr::str_extract("\\d*") |>
as.integer(),
municipality =
municipality |>
stringr::str_remove("\\d*") |>
stringr::str_trim()
)|>
dplyr::relocate(year, municipality_code, .before = municipality)
SPEI Data
Based on WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Code
spei_data <-
here::here("data", "spei_Extreme_drought_event_municipality_year2.csv") |>
readr::read_csv(col_types = readr::cols(.default = "c")) |>
janitor::clean_names() |>
dplyr::rename(municipality_code = code_muni) |>
dplyr::select(
municipality_code,
dplyr::all_of(paste0("spei_12m_", nutrition_data$year |> unique()))
) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::starts_with("spei_12m"),
.fns = as.numeric
)
) |>
tidyr::pivot_longer(
cols = starts_with("spei_12m"),
names_to = "year",
values_to = "spei_12m"
) |>
dplyr::mutate(
year =
year |>
stringr::str_remove("spei_12m_") |>
as.integer(),
year =
year |>
factor(
levels = year |> unique() |> sort(),
ordered = TRUE
),
municipality_code = municipality_code |> as.integer()
)
Analysis Data
Code
data <-
nutrition_data |>
dplyr::mutate(year = year |> as.character()) |>
# In order to adapt the data to the municipalities in the nutrition and
# gini data, since they do not have the check digit.
dplyr::rename(temp_municipality_code = municipality_code) |>
dplyr::left_join(
y = gdp_data |>
dplyr::mutate(
year = year |> as.character(),
temp_municipality_code =
municipality_code |>
stringr::str_sub(end = -2) |>
as.integer()
),
by = c("year", "temp_municipality_code")
) |>
dplyr::left_join(
y =
gini_data |>
dplyr::filter(year == 2010) |>
dplyr::select(municipality_code, gini_index) |>
dplyr::rename(temp_municipality_code = municipality_code),
by = c("temp_municipality_code"),
relationship = "many-to-one"
) |>
dplyr::left_join(
y = spei_data |>
dplyr::mutate(
year = year |> as.character(),
temp_municipality_code =
municipality_code |>
stringr::str_sub(end = -2) |>
as.integer()
),
by = c("year", "temp_municipality_code")
) |>
dplyr::rename(
municipality_code = municipality_code.x
) |>
dplyr::select(
year, municipality_code, municipality, misf,
number_of_children, sisvan_cover,
mbepr, beipr, mbepr_beipr, maper, mpepr, maper_mpepr,
gini_index, gdp_per_capita, spei_12m
) |>
dplyr::mutate(
# year = as.integer(year),
year =
year |>
factor(
levels = year |> unique() |> sort(),
ordered = TRUE
)
) |>
dplyr::filter(sisvan_cover >= 0.05) |>
tidyr::drop_na(number_of_children, sisvan_cover)
data
Code
dplyr::tibble(
n = data |> nrow(),
n_sisvan_cover_less_than_0_05 =
data |>
dplyr::filter(sisvan_cover < 0.05) |>
nrow(),
n_sisvan_cover_more_than_1 =
data |>
dplyr::filter(sisvan_cover > 1) |>
nrow(),
n_brazil_municipalities =
geobr::read_municipality(year = 2022, showProgress = FALSE) |>
dplyr::pull(code_muni) |>
length() |>
rutils::shush(),
missing_municipalities =
geobr::read_municipality(year = 2022, showProgress = FALSE) |>
dplyr::pull(code_muni) |>
as.integer() |>
setdiff(data |> dplyr::pull(municipality_code)) |>
length() |>
rutils::shush()
) |>
tidyr::pivot_longer(cols = dplyr::everything())
Dictionary
-
year
: Year of data collection. -
municipality_code
: Brazilian Institute of Geography and Statistics (IBGE) municipality code. -
misf
: Cluster of the Revised Multidimensional Index for Sustainable Food Systems (MISFS-R) (A, B, C, or D). -
number_of_children
: Number of children under five years old in the municipality. -
sisvan_cover
: Proportion of children under five covered by the Brazilian Food and Nutrition Surveillance System (SISVAN) in the municipality. -
mbepr
: Relative frequency of children under five years old with Very Short Stature for Age (Muito Baixa Estatura Para a Idade) in the municipality. -
beipr
: Relative frequency of children under five years old with Short Stature for Age (Baixa Estatura Para Idade) in the municipality. -
mbepr_beipr
: Relative frequency of children under five years old with Very Short/Short Stature for Age (Muito Baixa/Baixa Estatura Para Idade) in the municipality. -
maper
: Relative frequency of children under five years old with Severe Thinness for Height (Magreza Acentuada Para a Estatura) in the municipality. -
mpepr
: Relative frequency of children under five years old with Thinness for Height (Magreza Por Estatura) in the municipality. -
maper_mpepr
: Relative frequency of children under five years old with Severe/Moderate Thinness for Height (Magreza Acentuada/Moderada Para a Estatura) in the municipality. -
gini_index
: Gini index of per capita household income in the municipality at 2010. Due to limited data availability at the municipal level, all values are based on the 2010 Brazilian Census. -
gdp_per_capita
: Gross Domestic Product (GDP) per capita in the municipality in Brazilian Reais (BRL) based at current prices on 2010. -
spei_12m
: Standardised Precipitation Evapotranspiration Index (SPEI) in a 12-month times cale for the municipality.
Checking SISVAN Cover
Code
brand_div_palette <- function(x) {
make_color_vector(
n_prop = x,
colors = c(
get_brand_color("dark-red"),
# get_brand_color("white"),
get_brand_color_mix(
position = 950,
color_1 = "dark-red",
color_2 = "dark-red-triadic-blue",
alpha = 0.5
),
get_brand_color("dark-red-triadic-blue")
)
)
}
Code
# Run this chunk to produce the plots and the animation.
|>
data ::mutate(sisvan_cover = sisvan_cover * 100) |>
dplyranimate_plot_brazil_municipality(
col_fill = "sisvan_cover",
col_group = "year",
group_label = "Year",
comparable_areas = TRUE
suffix = NULL,
width = 1344,
height = 960,
dpi = 150,
transform = "identity",
breaks = seq(0, 100, 25),
reverse = FALSE,
limits = c(0, 100),
palette = brand_div_palette
)
Checking SPEI Variations
Year-to-Year comparison
Code
# Run this chunk to produce the plots and the animation.
|>
data animate_plot_brazil_municipality(
col_fill = "spei_12m",
col_group = "year",
group_label = "Year",
comparable_areas = TRUE
suffix = NULL,
width = 1344,
height = 960,
dpi = 150,
transform = "identity",
# breaks = c(-2, -1.83, -1.43, -1, 1, 1.42, 1.82, 2),
breaks = seq(-2 , 2, 0.5),
reverse = FALSE,
limits = c(-2, 2),
palette = brand_div_palette
)
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Comparison with External Data
Figure 31 presents an independent analysis for comparison, while our results are shown in Figure 32.
Source: Reproduced from Food and Agriculture Organization of the United Nations et al. (2025, fig. VI.1, p. 185).
Code
plot <-
data |>
dplyr::filter(year >= 2010, year <= 2019) |>
plot_brazil_municipality(
col_fill = "spei_12m",
comparable_areas = TRUE,
transform = "identity",
binned = FALSE,
breaks = seq(-2 , 2, 0.5),
reverse = FALSE,
limits = c(-2, 2),
print = FALSE,
quiet = TRUE,
palette = function(x) {
make_color_vector(
n_prop = x,
colors = c(
"#6F0322",
"#BC2D32",
"#E28668",
"#F9D0BC",
"#F1F1F3",
"#BBDAE9",
"#65A9D1",
"#266DB1",
"#0D2648"
)
)
}
) +
ggplot2::labs(title = "2010-2019") +
ggplot2::theme(plot.title = element_text(hjust = 0.5))
plot |> print() |> rutils::shush()
Source: Created by the authors using data from the WorldClim 2.1 Historical Monthly Weather dataset (Fick & Hijmans, 2017; Harris et al., 2020).
Checking Distributions
General Distributions
Code
data |>
summarytools::freq(
var = year,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
year
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
2008 | 4996 | 7.96 | 7.96 | 7.96 | 7.96 |
2009 | 5253 | 8.37 | 16.33 | 8.37 | 16.33 |
2010 | 5274 | 8.40 | 24.73 | 8.40 | 24.73 |
2011 | 5266 | 8.39 | 33.12 | 8.39 | 33.12 |
2012 | 5288 | 8.43 | 41.55 | 8.43 | 41.55 |
2013 | 5143 | 8.19 | 49.74 | 8.19 | 49.74 |
2014 | 5164 | 8.23 | 57.97 | 8.23 | 57.97 |
2015 | 5229 | 8.33 | 66.30 | 8.33 | 66.30 |
2016 | 5280 | 8.41 | 74.72 | 8.41 | 74.72 |
2017 | 5263 | 8.39 | 83.10 | 8.39 | 83.10 |
2018 | 5271 | 8.40 | 91.50 | 8.40 | 91.50 |
2019 | 5335 | 8.50 | 100.00 | 8.50 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 62762 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data |>
plot_bar(
col = "year",
y_label = "year"
)
Code
data |>
summarytools::freq(
var = misf,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
misf
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
A | 7934 | 12.64 | 12.64 | 12.64 | 12.64 |
B | 31734 | 50.56 | 63.20 | 50.56 | 63.20 |
C | 20324 | 32.38 | 95.59 | 32.38 | 95.59 |
D | 2770 | 4.41 | 100.00 | 4.41 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 62762 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data |>
plot_bar(
col = "misf",
y_label = "misf"
)
Code
data |>
summarytools::descr(
var = number_of_children,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
number_of_children
variable.
number_of_children | |
---|---|
Mean | 2498.50 |
Std.Dev | 9764.47 |
Min | 41.00 |
Q1 | 399.00 |
Median | 910.00 |
Q3 | 2009.00 |
Max | 797644.00 |
MAD | 911.80 |
IQR | 1610.00 |
CV | 3.91 |
Skewness | 32.79 |
SE.Skewness | 0.01 |
Kurtosis | 1888.84 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "number_of_children",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = sisvan_cover,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
sisvan_cover
variable.
sisvan_cover | |
---|---|
Mean | 0.41 |
Std.Dev | 0.23 |
Min | 0.05 |
Q1 | 0.23 |
Median | 0.38 |
Q3 | 0.57 |
Max | 1.00 |
MAD | 0.25 |
IQR | 0.34 |
CV | 0.55 |
Skewness | 0.51 |
SE.Skewness | 0.01 |
Kurtosis | -0.55 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "sisvan_cover",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = mbepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr
variable.
mbepr | |
---|---|
Mean | 0.06 |
Std.Dev | 0.05 |
Min | 0.00 |
Q1 | 0.03 |
Median | 0.05 |
Q3 | 0.07 |
Max | 0.89 |
MAD | 0.03 |
IQR | 0.04 |
CV | 0.81 |
Skewness | 3.16 |
SE.Skewness | 0.01 |
Kurtosis | 23.36 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "mbepr",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
beipr
variable.
beipr | |
---|---|
Mean | 0.07 |
Std.Dev | 0.04 |
Min | 0.00 |
Q1 | 0.04 |
Median | 0.06 |
Q3 | 0.08 |
Max | 0.69 |
MAD | 0.03 |
IQR | 0.04 |
CV | 0.54 |
Skewness | 1.42 |
SE.Skewness | 0.01 |
Kurtosis | 5.80 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "beipr",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = mbepr_beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr_beipr
variable.
mbepr_beipr | |
---|---|
Mean | 0.12 |
Std.Dev | 0.07 |
Min | 0.00 |
Q1 | 0.08 |
Median | 0.11 |
Q3 | 0.15 |
Max | 1.00 |
MAD | 0.06 |
IQR | 0.08 |
CV | 0.58 |
Skewness | 1.77 |
SE.Skewness | 0.01 |
Kurtosis | 6.89 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "mbepr_beipr",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = maper,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper
variable.
maper | |
---|---|
Mean | 0.02 |
Std.Dev | 0.03 |
Min | 0.00 |
Q1 | 0.01 |
Median | 0.02 |
Q3 | 0.03 |
Max | 0.75 |
MAD | 0.02 |
IQR | 0.02 |
CV | 1.05 |
Skewness | 5.34 |
SE.Skewness | 0.01 |
Kurtosis | 68.42 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "maper",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mpepr
variable.
mpepr | |
---|---|
Mean | 0.03 |
Std.Dev | 0.02 |
Min | 0.00 |
Q1 | 0.02 |
Median | 0.03 |
Q3 | 0.04 |
Max | 0.58 |
MAD | 0.02 |
IQR | 0.02 |
CV | 0.67 |
Skewness | 2.14 |
SE.Skewness | 0.01 |
Kurtosis | 23.16 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "mpepr",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = maper_mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper_mpepr
variable.
maper_mpepr | |
---|---|
Mean | 0.05 |
Std.Dev | 0.04 |
Min | 0.00 |
Q1 | 0.03 |
Median | 0.05 |
Q3 | 0.07 |
Max | 0.91 |
MAD | 0.03 |
IQR | 0.04 |
CV | 0.73 |
Skewness | 3.14 |
SE.Skewness | 0.01 |
Kurtosis | 27.23 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "maper_mpepr",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = gini_index,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gini_index
variable.
gini_index | |
---|---|
Mean | 0.50 |
Std.Dev | 0.07 |
Min | 0.28 |
Q1 | 0.46 |
Median | 0.50 |
Q3 | 0.55 |
Max | 0.81 |
MAD | 0.06 |
IQR | 0.09 |
CV | 0.13 |
Skewness | 0.22 |
SE.Skewness | 0.01 |
Kurtosis | 0.56 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "gini_index",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = gdp_per_capita,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gdp_per_capita
variable.
gdp_per_capita | |
---|---|
Mean | 18045.58 |
Std.Dev | 20454.91 |
Min | 301.61 |
Q1 | 7485.60 |
Median | 12703.63 |
Q3 | 22238.03 |
Max | 815697.80 |
MAD | 9267.71 |
IQR | 14751.90 |
CV | 1.13 |
Skewness | 8.75 |
SE.Skewness | 0.01 |
Kurtosis | 179.42 |
N.Valid | 57487.00 |
Pct.Valid | 91.60 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "gdp_per_capita",
jitter = FALSE
)
Code
data |>
summarytools::descr(
var = spei_12m,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
spei_12m
variable.
spei_12m | |
---|---|
Mean | -0.18 |
Std.Dev | 0.41 |
Min | -1.75 |
Q1 | -0.48 |
Median | -0.17 |
Q3 | 0.11 |
Max | 1.03 |
MAD | 0.44 |
IQR | 0.59 |
CV | -2.27 |
Skewness | -0.08 |
SE.Skewness | 0.01 |
Kurtosis | -0.44 |
N.Valid | 62762.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data |>
plot_dist(
col = "spei_12m",
jitter = FALSE
)
By MISFS-R Clusters
A
Code
data_misfs_a |>
summarytools::freq(
var = year,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
year
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
2008 | 615 | 7.75 | 7.75 | 7.75 | 7.75 |
2009 | 662 | 8.34 | 16.10 | 8.34 | 16.10 |
2010 | 663 | 8.36 | 24.45 | 8.36 | 24.45 |
2011 | 666 | 8.39 | 32.85 | 8.39 | 32.85 |
2012 | 665 | 8.38 | 41.23 | 8.38 | 41.23 |
2013 | 667 | 8.41 | 49.63 | 8.41 | 49.63 |
2014 | 670 | 8.44 | 58.08 | 8.44 | 58.08 |
2015 | 669 | 8.43 | 66.51 | 8.43 | 66.51 |
2016 | 663 | 8.36 | 74.87 | 8.36 | 74.87 |
2017 | 662 | 8.34 | 83.21 | 8.34 | 83.21 |
2018 | 663 | 8.36 | 91.57 | 8.36 | 91.57 |
2019 | 669 | 8.43 | 100.00 | 8.43 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 7934 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_bar(
col = "year",
y_label = "year"
)
Code
data_misfs_a |>
summarytools::freq(
var = misf,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
misf
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
A | 7934 | 100.00 | 100.00 | 100.00 | 100.00 |
B | 0 | 0.00 | 100.00 | 0.00 | 100.00 |
C | 0 | 0.00 | 100.00 | 0.00 | 100.00 |
D | 0 | 0.00 | 100.00 | 0.00 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 7934 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_bar(
col = "misf",
y_label = "misf"
)
Code
data_misfs_a |>
summarytools::descr(
var = number_of_children,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
number_of_children
variable.
number_of_children | |
---|---|
Mean | 1877.77 |
Std.Dev | 5272.84 |
Min | 59.00 |
Q1 | 325.00 |
Median | 682.50 |
Q3 | 1554.00 |
Max | 94954.00 |
MAD | 651.60 |
IQR | 1228.50 |
CV | 2.81 |
Skewness | 9.42 |
SE.Skewness | 0.03 |
Kurtosis | 117.89 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "number_of_children",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = sisvan_cover,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
sisvan_cover
variable.
sisvan_cover | |
---|---|
Mean | 0.34 |
Std.Dev | 0.18 |
Min | 0.05 |
Q1 | 0.20 |
Median | 0.30 |
Q3 | 0.44 |
Max | 1.00 |
MAD | 0.16 |
IQR | 0.24 |
CV | 0.54 |
Skewness | 0.98 |
SE.Skewness | 0.03 |
Kurtosis | 0.79 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "sisvan_cover",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = mbepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr
variable.
mbepr | |
---|---|
Mean | 0.06 |
Std.Dev | 0.05 |
Min | 0.00 |
Q1 | 0.03 |
Median | 0.05 |
Q3 | 0.08 |
Max | 0.78 |
MAD | 0.03 |
IQR | 0.04 |
CV | 0.79 |
Skewness | 3.77 |
SE.Skewness | 0.03 |
Kurtosis | 33.23 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "mbepr",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
beipr
variable.
beipr | |
---|---|
Mean | 0.07 |
Std.Dev | 0.04 |
Min | 0.00 |
Q1 | 0.04 |
Median | 0.06 |
Q3 | 0.08 |
Max | 0.69 |
MAD | 0.03 |
IQR | 0.04 |
CV | 0.56 |
Skewness | 2.01 |
SE.Skewness | 0.03 |
Kurtosis | 16.06 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "beipr",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = mbepr_beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr_beipr
variable.
mbepr_beipr | |
---|---|
Mean | 0.13 |
Std.Dev | 0.07 |
Min | 0.00 |
Q1 | 0.08 |
Median | 0.11 |
Q3 | 0.16 |
Max | 1.00 |
MAD | 0.06 |
IQR | 0.08 |
CV | 0.57 |
Skewness | 2.25 |
SE.Skewness | 0.03 |
Kurtosis | 12.63 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "mbepr_beipr",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = maper,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper
variable.
maper | |
---|---|
Mean | 0.03 |
Std.Dev | 0.03 |
Min | 0.00 |
Q1 | 0.01 |
Median | 0.02 |
Q3 | 0.04 |
Max | 0.59 |
MAD | 0.02 |
IQR | 0.02 |
CV | 1.03 |
Skewness | 5.40 |
SE.Skewness | 0.03 |
Kurtosis | 61.28 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "maper",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mpepr
variable.
mpepr | |
---|---|
Mean | 0.03 |
Std.Dev | 0.02 |
Min | 0.00 |
Q1 | 0.02 |
Median | 0.03 |
Q3 | 0.04 |
Max | 0.46 |
MAD | 0.02 |
IQR | 0.02 |
CV | 0.67 |
Skewness | 2.53 |
SE.Skewness | 0.03 |
Kurtosis | 26.20 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "mpepr",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = maper_mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper_mpepr
variable.
maper_mpepr | |
---|---|
Mean | 0.06 |
Std.Dev | 0.04 |
Min | 0.00 |
Q1 | 0.04 |
Median | 0.05 |
Q3 | 0.08 |
Max | 0.91 |
MAD | 0.03 |
IQR | 0.04 |
CV | 0.71 |
Skewness | 4.02 |
SE.Skewness | 0.03 |
Kurtosis | 41.22 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "maper_mpepr",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = gini_index,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gini_index
variable.
gini_index | |
---|---|
Mean | 0.52 |
Std.Dev | 0.06 |
Min | 0.37 |
Q1 | 0.48 |
Median | 0.52 |
Q3 | 0.56 |
Max | 0.78 |
MAD | 0.06 |
IQR | 0.08 |
CV | 0.12 |
Skewness | 0.52 |
SE.Skewness | 0.03 |
Kurtosis | 0.61 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "gini_index",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = gdp_per_capita,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gdp_per_capita
variable.
gdp_per_capita | |
---|---|
Mean | 22058.96 |
Std.Dev | 20696.45 |
Min | 3522.11 |
Q1 | 11119.05 |
Median | 16237.33 |
Q3 | 25444.64 |
Max | 362079.97 |
MAD | 9273.49 |
IQR | 14319.14 |
CV | 0.94 |
Skewness | 5.12 |
SE.Skewness | 0.03 |
Kurtosis | 47.82 |
N.Valid | 7271.00 |
Pct.Valid | 91.64 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "gdp_per_capita",
jitter = FALSE
)
Code
data_misfs_a |>
summarytools::descr(
var = spei_12m,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
spei_12m
variable.
spei_12m | |
---|---|
Mean | -0.31 |
Std.Dev | 0.41 |
Min | -1.64 |
Q1 | -0.60 |
Median | -0.27 |
Q3 | -0.03 |
Max | 1.03 |
MAD | 0.42 |
IQR | 0.57 |
CV | -1.31 |
Skewness | -0.20 |
SE.Skewness | 0.03 |
Kurtosis | -0.31 |
N.Valid | 7934.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_a |>
plot_dist(
col = "spei_12m",
jitter = FALSE
)
B
Code
data_misfs_b |>
summarytools::freq(
var = year,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
year
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
2008 | 2539 | 8.00 | 8.00 | 8.00 | 8.00 |
2009 | 2662 | 8.39 | 16.39 | 8.39 | 16.39 |
2010 | 2689 | 8.47 | 24.86 | 8.47 | 24.86 |
2011 | 2668 | 8.41 | 33.27 | 8.41 | 33.27 |
2012 | 2663 | 8.39 | 41.66 | 8.39 | 41.66 |
2013 | 2556 | 8.05 | 49.72 | 8.05 | 49.72 |
2014 | 2560 | 8.07 | 57.78 | 8.07 | 57.78 |
2015 | 2619 | 8.25 | 66.04 | 8.25 | 66.04 |
2016 | 2665 | 8.40 | 74.43 | 8.40 | 74.43 |
2017 | 2664 | 8.39 | 82.83 | 8.39 | 82.83 |
2018 | 2710 | 8.54 | 91.37 | 8.54 | 91.37 |
2019 | 2739 | 8.63 | 100.00 | 8.63 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 31734 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_bar(
col = "year",
y_label = "year"
)
Code
data_misfs_b |>
summarytools::freq(
var = misf,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
misf
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
A | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
B | 31734 | 100.00 | 100.00 | 100.00 | 100.00 |
C | 0 | 0.00 | 100.00 | 0.00 | 100.00 |
D | 0 | 0.00 | 100.00 | 0.00 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 31734 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_bar(
col = "misf",
y_label = "misf"
)
Code
data_misfs_b |>
summarytools::descr(
var = number_of_children,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
number_of_children
variable.
number_of_children | |
---|---|
Mean | 2433.14 |
Std.Dev | 11344.02 |
Min | 41.00 |
Q1 | 305.00 |
Median | 647.00 |
Q3 | 1627.00 |
Max | 797644.00 |
MAD | 644.93 |
IQR | 1322.00 |
CV | 4.66 |
Skewness | 36.48 |
SE.Skewness | 0.01 |
Kurtosis | 1983.24 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "number_of_children",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = sisvan_cover,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
sisvan_cover
variable.
sisvan_cover | |
---|---|
Mean | 0.38 |
Std.Dev | 0.24 |
Min | 0.05 |
Q1 | 0.18 |
Median | 0.32 |
Q3 | 0.54 |
Max | 1.00 |
MAD | 0.24 |
IQR | 0.36 |
CV | 0.64 |
Skewness | 0.74 |
SE.Skewness | 0.01 |
Kurtosis | -0.45 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "sisvan_cover",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = mbepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr
variable.
mbepr | |
---|---|
Mean | 0.04 |
Std.Dev | 0.04 |
Min | 0.00 |
Q1 | 0.02 |
Median | 0.04 |
Q3 | 0.06 |
Max | 0.89 |
MAD | 0.03 |
IQR | 0.04 |
CV | 0.94 |
Skewness | 3.80 |
SE.Skewness | 0.01 |
Kurtosis | 32.09 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "mbepr",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
beipr
variable.
beipr | |
---|---|
Mean | 0.06 |
Std.Dev | 0.03 |
Min | 0.00 |
Q1 | 0.04 |
Median | 0.05 |
Q3 | 0.07 |
Max | 0.49 |
MAD | 0.02 |
IQR | 0.03 |
CV | 0.56 |
Skewness | 1.45 |
SE.Skewness | 0.01 |
Kurtosis | 6.36 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "beipr",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = mbepr_beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr_beipr
variable.
mbepr_beipr | |
---|---|
Mean | 0.10 |
Std.Dev | 0.06 |
Min | 0.00 |
Q1 | 0.06 |
Median | 0.09 |
Q3 | 0.12 |
Max | 0.89 |
MAD | 0.05 |
IQR | 0.06 |
CV | 0.61 |
Skewness | 2.16 |
SE.Skewness | 0.01 |
Kurtosis | 10.79 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "mbepr_beipr",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = maper,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper
variable.
maper | |
---|---|
Mean | 0.02 |
Std.Dev | 0.02 |
Min | 0.00 |
Q1 | 0.01 |
Median | 0.01 |
Q3 | 0.03 |
Max | 0.75 |
MAD | 0.01 |
IQR | 0.02 |
CV | 1.22 |
Skewness | 5.57 |
SE.Skewness | 0.01 |
Kurtosis | 78.88 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "maper",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mpepr
variable.
mpepr | |
---|---|
Mean | 0.02 |
Std.Dev | 0.02 |
Min | 0.00 |
Q1 | 0.01 |
Median | 0.02 |
Q3 | 0.03 |
Max | 0.40 |
MAD | 0.01 |
IQR | 0.02 |
CV | 0.81 |
Skewness | 2.18 |
SE.Skewness | 0.01 |
Kurtosis | 13.89 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "mpepr",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = maper_mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper_mpepr
variable.
maper_mpepr | |
---|---|
Mean | 0.04 |
Std.Dev | 0.04 |
Min | 0.00 |
Q1 | 0.02 |
Median | 0.04 |
Q3 | 0.06 |
Max | 0.75 |
MAD | 0.02 |
IQR | 0.03 |
CV | 0.83 |
Skewness | 3.18 |
SE.Skewness | 0.01 |
Kurtosis | 26.11 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "maper_mpepr",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = gini_index,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gini_index
variable.
gini_index | |
---|---|
Mean | 0.47 |
Std.Dev | 0.06 |
Min | 0.28 |
Q1 | 0.43 |
Median | 0.47 |
Q3 | 0.51 |
Max | 0.78 |
MAD | 0.06 |
IQR | 0.08 |
CV | 0.12 |
Skewness | 0.24 |
SE.Skewness | 0.01 |
Kurtosis | 0.64 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "gini_index",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = gdp_per_capita,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gdp_per_capita
variable.
gdp_per_capita | |
---|---|
Mean | 23457.49 |
Std.Dev | 23488.35 |
Min | 2729.65 |
Q1 | 11984.65 |
Median | 18584.56 |
Q3 | 27952.20 |
Max | 815697.80 |
MAD | 11122.91 |
IQR | 15967.55 |
CV | 1.00 |
Skewness | 9.28 |
SE.Skewness | 0.01 |
Kurtosis | 182.88 |
N.Valid | 29045.00 |
Pct.Valid | 91.53 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "gdp_per_capita",
jitter = FALSE
)
Code
data_misfs_b |>
summarytools::descr(
var = spei_12m,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
spei_12m
variable.
spei_12m | |
---|---|
Mean | -0.08 |
Std.Dev | 0.36 |
Min | -1.24 |
Q1 | -0.34 |
Median | -0.07 |
Q3 | 0.17 |
Max | 0.78 |
MAD | 0.37 |
IQR | 0.51 |
CV | -4.74 |
Skewness | -0.01 |
SE.Skewness | 0.01 |
Kurtosis | -0.58 |
N.Valid | 31734.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_b |>
plot_dist(
col = "spei_12m",
jitter = FALSE
)
C
Code
data_misfs_c |>
summarytools::freq(
var = year,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
year
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
2008 | 1625 | 8.00 | 8.00 | 8.00 | 8.00 |
2009 | 1702 | 8.37 | 16.37 | 8.37 | 16.37 |
2010 | 1690 | 8.32 | 24.69 | 8.32 | 24.69 |
2011 | 1700 | 8.36 | 33.05 | 8.36 | 33.05 |
2012 | 1728 | 8.50 | 41.55 | 8.50 | 41.55 |
2013 | 1685 | 8.29 | 49.84 | 8.29 | 49.84 |
2014 | 1700 | 8.36 | 58.21 | 8.36 | 58.21 |
2015 | 1705 | 8.39 | 66.60 | 8.39 | 66.60 |
2016 | 1718 | 8.45 | 75.05 | 8.45 | 75.05 |
2017 | 1704 | 8.38 | 83.43 | 8.38 | 83.43 |
2018 | 1668 | 8.21 | 91.64 | 8.21 | 91.64 |
2019 | 1699 | 8.36 | 100.00 | 8.36 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 20324 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_bar(
col = "year",
y_label = "year"
)
Code
data_misfs_c |>
summarytools::freq(
var = misf,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
misf
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
A | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
B | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
C | 20324 | 100.00 | 100.00 | 100.00 | 100.00 |
D | 0 | 0.00 | 100.00 | 0.00 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 20324 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_bar(
col = "misf",
y_label = "misf"
)
Code
data_misfs_c |>
summarytools::descr(
var = number_of_children,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
number_of_children
variable.
number_of_children | |
---|---|
Mean | 2439.41 |
Std.Dev | 7494.04 |
Min | 96.00 |
Q1 | 636.00 |
Median | 1213.00 |
Q3 | 2206.00 |
Max | 206458.00 |
MAD | 1024.48 |
IQR | 1570.00 |
CV | 3.07 |
Skewness | 16.77 |
SE.Skewness | 0.02 |
Kurtosis | 368.16 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "number_of_children",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = sisvan_cover,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
sisvan_cover
variable.
sisvan_cover | |
---|---|
Mean | 0.50 |
Std.Dev | 0.19 |
Min | 0.05 |
Q1 | 0.36 |
Median | 0.49 |
Q3 | 0.62 |
Max | 1.00 |
MAD | 0.20 |
IQR | 0.27 |
CV | 0.39 |
Skewness | 0.17 |
SE.Skewness | 0.02 |
Kurtosis | -0.36 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "sisvan_cover",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = mbepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr
variable.
mbepr | |
---|---|
Mean | 0.07 |
Std.Dev | 0.04 |
Min | 0.00 |
Q1 | 0.04 |
Median | 0.06 |
Q3 | 0.08 |
Max | 0.71 |
MAD | 0.03 |
IQR | 0.04 |
CV | 0.64 |
Skewness | 3.00 |
SE.Skewness | 0.02 |
Kurtosis | 20.44 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "mbepr",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
beipr
variable.
beipr | |
---|---|
Mean | 0.08 |
Std.Dev | 0.03 |
Min | 0.00 |
Q1 | 0.06 |
Median | 0.07 |
Q3 | 0.09 |
Max | 0.38 |
MAD | 0.03 |
IQR | 0.03 |
CV | 0.40 |
Skewness | 1.12 |
SE.Skewness | 0.02 |
Kurtosis | 2.98 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "beipr",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = mbepr_beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr_beipr
variable.
mbepr_beipr | |
---|---|
Mean | 0.14 |
Std.Dev | 0.07 |
Min | 0.00 |
Q1 | 0.10 |
Median | 0.13 |
Q3 | 0.17 |
Max | 0.78 |
MAD | 0.05 |
IQR | 0.07 |
CV | 0.45 |
Skewness | 1.69 |
SE.Skewness | 0.02 |
Kurtosis | 6.25 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "mbepr_beipr",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = maper,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper
variable.
maper | |
---|---|
Mean | 0.03 |
Std.Dev | 0.03 |
Min | 0.00 |
Q1 | 0.02 |
Median | 0.03 |
Q3 | 0.04 |
Max | 0.69 |
MAD | 0.02 |
IQR | 0.02 |
CV | 0.85 |
Skewness | 5.82 |
SE.Skewness | 0.02 |
Kurtosis | 73.54 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "maper",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mpepr
variable.
mpepr | |
---|---|
Mean | 0.03 |
Std.Dev | 0.02 |
Min | 0.00 |
Q1 | 0.02 |
Median | 0.03 |
Q3 | 0.04 |
Max | 0.26 |
MAD | 0.01 |
IQR | 0.02 |
CV | 0.48 |
Skewness | 1.42 |
SE.Skewness | 0.02 |
Kurtosis | 6.23 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "mpepr",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = maper_mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper_mpepr
variable.
maper_mpepr | |
---|---|
Mean | 0.07 |
Std.Dev | 0.04 |
Min | 0.00 |
Q1 | 0.04 |
Median | 0.06 |
Q3 | 0.08 |
Max | 0.74 |
MAD | 0.03 |
IQR | 0.04 |
CV | 0.58 |
Skewness | 3.47 |
SE.Skewness | 0.02 |
Kurtosis | 29.22 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "maper_mpepr",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = gini_index,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gini_index
variable.
gini_index | |
---|---|
Mean | 0.53 |
Std.Dev | 0.05 |
Min | 0.37 |
Q1 | 0.50 |
Median | 0.53 |
Q3 | 0.56 |
Max | 0.80 |
MAD | 0.05 |
IQR | 0.06 |
CV | 0.09 |
Skewness | 0.37 |
SE.Skewness | 0.02 |
Kurtosis | 0.98 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "gini_index",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = gdp_per_capita,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gdp_per_capita
variable.
gdp_per_capita | |
---|---|
Mean | 8964.53 |
Std.Dev | 9688.17 |
Min | 301.61 |
Q1 | 5145.99 |
Median | 6999.36 |
Q3 | 9466.20 |
Max | 296621.36 |
MAD | 3086.89 |
IQR | 4320.21 |
CV | 1.08 |
Skewness | 9.54 |
SE.Skewness | 0.02 |
Kurtosis | 162.45 |
N.Valid | 18633.00 |
Pct.Valid | 91.68 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "gdp_per_capita",
jitter = FALSE
)
Code
data_misfs_c |>
summarytools::descr(
var = spei_12m,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
spei_12m
variable.
spei_12m | |
---|---|
Mean | -0.29 |
Std.Dev | 0.45 |
Min | -1.42 |
Q1 | -0.63 |
Median | -0.34 |
Q3 | 0.05 |
Max | 0.89 |
MAD | 0.48 |
IQR | 0.67 |
CV | -1.57 |
Skewness | 0.23 |
SE.Skewness | 0.02 |
Kurtosis | -0.61 |
N.Valid | 20324.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_c |>
plot_dist(
col = "spei_12m",
jitter = FALSE
)
D
Code
data_misfs_d |>
summarytools::freq(
var = year,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
year
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
2008 | 217 | 7.83 | 7.83 | 7.83 | 7.83 |
2009 | 227 | 8.19 | 16.03 | 8.19 | 16.03 |
2010 | 232 | 8.38 | 24.40 | 8.38 | 24.40 |
2011 | 232 | 8.38 | 32.78 | 8.38 | 32.78 |
2012 | 232 | 8.38 | 41.16 | 8.38 | 41.16 |
2013 | 235 | 8.48 | 49.64 | 8.48 | 49.64 |
2014 | 234 | 8.45 | 58.09 | 8.45 | 58.09 |
2015 | 236 | 8.52 | 66.61 | 8.52 | 66.61 |
2016 | 234 | 8.45 | 75.05 | 8.45 | 75.05 |
2017 | 233 | 8.41 | 83.47 | 8.41 | 83.47 |
2018 | 230 | 8.30 | 91.77 | 8.30 | 91.77 |
2019 | 228 | 8.23 | 100.00 | 8.23 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 2770 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_bar(
col = "year",
y_label = "year"
)
Code
data_misfs_d |>
summarytools::freq(
var = misf,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
misf
variable.
Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
---|---|---|---|---|---|
A | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
B | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
C | 0 | 0.00 | 0.00 | 0.00 | 0.00 |
D | 2770 | 100.00 | 100.00 | 100.00 | 100.00 |
<NA> | 0 | 0.00 | 100.00 | ||
Total | 2770 | 100.00 | 100.00 | 100.00 | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_bar(
col = "misf",
y_label = "misf"
)
Code
data_misfs_d |>
summarytools::descr(
var = number_of_children,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
number_of_children
variable.
number_of_children | |
---|---|
Mean | 5458.81 |
Std.Dev | 13582.98 |
Min | 274.00 |
Q1 | 1730.00 |
Median | 2901.50 |
Q3 | 5084.00 |
Max | 176505.00 |
MAD | 2058.59 |
IQR | 3353.50 |
CV | 2.49 |
Skewness | 9.79 |
SE.Skewness | 0.05 |
Kurtosis | 110.53 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "number_of_children",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = sisvan_cover,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
sisvan_cover
variable.
sisvan_cover | |
---|---|
Mean | 0.37 |
Std.Dev | 0.18 |
Min | 0.05 |
Q1 | 0.22 |
Median | 0.34 |
Q3 | 0.49 |
Max | 1.00 |
MAD | 0.20 |
IQR | 0.27 |
CV | 0.50 |
Skewness | 0.59 |
SE.Skewness | 0.05 |
Kurtosis | 0.00 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "sisvan_cover",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = mbepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr
variable.
mbepr | |
---|---|
Mean | 0.09 |
Std.Dev | 0.06 |
Min | 0.00 |
Q1 | 0.06 |
Median | 0.08 |
Q3 | 0.11 |
Max | 0.70 |
MAD | 0.04 |
IQR | 0.05 |
CV | 0.60 |
Skewness | 2.83 |
SE.Skewness | 0.05 |
Kurtosis | 15.78 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "mbepr",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
beipr
variable.
beipr | |
---|---|
Mean | 0.13 |
Std.Dev | 0.05 |
Min | 0.00 |
Q1 | 0.09 |
Median | 0.12 |
Q3 | 0.15 |
Max | 0.37 |
MAD | 0.04 |
IQR | 0.06 |
CV | 0.36 |
Skewness | 0.82 |
SE.Skewness | 0.05 |
Kurtosis | 1.03 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "beipr",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = mbepr_beipr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mbepr_beipr
variable.
mbepr_beipr | |
---|---|
Mean | 0.22 |
Std.Dev | 0.09 |
Min | 0.02 |
Q1 | 0.16 |
Median | 0.21 |
Q3 | 0.27 |
Max | 0.77 |
MAD | 0.08 |
IQR | 0.11 |
CV | 0.40 |
Skewness | 1.15 |
SE.Skewness | 0.05 |
Kurtosis | 2.43 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "mbepr_beipr",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = maper,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper
variable.
maper | |
---|---|
Mean | 0.03 |
Std.Dev | 0.02 |
Min | 0.00 |
Q1 | 0.02 |
Median | 0.02 |
Q3 | 0.03 |
Max | 0.25 |
MAD | 0.01 |
IQR | 0.02 |
CV | 0.70 |
Skewness | 3.74 |
SE.Skewness | 0.05 |
Kurtosis | 26.00 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "maper",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
mpepr
variable.
mpepr | |
---|---|
Mean | 0.03 |
Std.Dev | 0.02 |
Min | 0.00 |
Q1 | 0.02 |
Median | 0.03 |
Q3 | 0.04 |
Max | 0.58 |
MAD | 0.01 |
IQR | 0.02 |
CV | 0.54 |
Skewness | 9.89 |
SE.Skewness | 0.05 |
Kurtosis | 256.68 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "mpepr",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = maper_mpepr,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
maper_mpepr
variable.
maper_mpepr | |
---|---|
Mean | 0.06 |
Std.Dev | 0.03 |
Min | 0.00 |
Q1 | 0.04 |
Median | 0.06 |
Q3 | 0.08 |
Max | 0.59 |
MAD | 0.02 |
IQR | 0.03 |
CV | 0.53 |
Skewness | 3.61 |
SE.Skewness | 0.05 |
Kurtosis | 33.01 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "maper_mpepr",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = gini_index,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gini_index
variable.
gini_index | |
---|---|
Mean | 0.60 |
Std.Dev | 0.06 |
Min | 0.45 |
Q1 | 0.56 |
Median | 0.59 |
Q3 | 0.63 |
Max | 0.81 |
MAD | 0.05 |
IQR | 0.07 |
CV | 0.10 |
Skewness | 0.79 |
SE.Skewness | 0.05 |
Kurtosis | 1.03 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "gini_index",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = gdp_per_capita,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
gdp_per_capita
variable.
gdp_per_capita | |
---|---|
Mean | 11283.13 |
Std.Dev | 14661.64 |
Min | 1755.69 |
Q1 | 6088.96 |
Median | 8357.51 |
Q3 | 12467.00 |
Max | 291965.37 |
MAD | 4242.41 |
IQR | 6375.31 |
CV | 1.30 |
Skewness | 11.12 |
SE.Skewness | 0.05 |
Kurtosis | 172.80 |
N.Valid | 2538.00 |
Pct.Valid | 91.62 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "gdp_per_capita",
jitter = FALSE
)
Code
data_misfs_d |>
summarytools::descr(
var = spei_12m,
style = "rmarkdown",
plain.ascii = FALSE,
headings = FALSE
)
spei_12m
variable.
spei_12m | |
---|---|
Mean | -0.24 |
Std.Dev | 0.37 |
Min | -1.75 |
Q1 | -0.45 |
Median | -0.21 |
Q3 | 0.02 |
Max | 0.69 |
MAD | 0.34 |
IQR | 0.47 |
CV | -1.54 |
Skewness | -0.51 |
SE.Skewness | 0.05 |
Kurtosis | 0.28 |
N.Valid | 2770.00 |
Pct.Valid | 100.00 |
Source: Created by the authors.
Code
data_misfs_d |>
plot_dist(
col = "spei_12m",
jitter = FALSE
)
Checking Correlations
Code
Code
Code
Modeling the Data
Please note that in some graphics, the x-axis is inverted to improve data comprehension.
By s(spei_12m)
+ te(gini_index, gdp_per_capita)
+ s(year)
(Continuous year
)
Code
mbepr_gam_1 <- mgcv::gam(
mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mbepr_gam_1 |> summary()
#>
#> Family: Beta regression(22.957)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.887747862 0.003192277 -904.6045 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.065935 8.775443 114.6455 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.616536 19.579690 12499.1053 < 2.22e-16 ***
#> s(year) 8.800541 8.987666 795.5383 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0639 Deviance explained = 21.5%
#> -REML = -1.1514e+05 Scale est. = 1 n = 57487
Code
mbepr_gam_1 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
mbepr_gam_1
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0638533070 | weak | cohen1988 |
SE | 0.0018883054 | NA | NA |
Lower CI | 0.0601522965 | weak | cohen1988 |
Upper CI | 0.0675543176 | weak | cohen1988 |
Source: Created by the authors.
Code
mbepr_gam_1 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_gam_1
model.
Value | |
---|---|
df | 36.483012351 |
logLik | 115243.054119036 |
AIC | -230407.422639320 |
BIC | -230054.938141579 |
deviance | 58942.639710968 |
df.residual | 57450.516987649 |
nobs | 57487.000000000 |
adj.r.squared | 0.063853307 |
npar | 43.000000000 |
Source: Created by the authors.
Code
mbepr_gam_1 |>
summarise_coefs() |>
md_named_tibble()
mbepr_gam_1
model.
Value | |
---|---|
[Mean] | 0.0514372287 |
mean((Intercept)) | -2.8877478616 |
mean(s(spei_12m)) | -0.0273768035 |
mean(te(gini_index,gdp_per_capita)) | 0.1785181236 |
mean(s(year)) | 0.1179449956 |
s(spei_12m).1 | -0.1220646127 |
s(spei_12m).2 | 0.1013099734 |
s(spei_12m).3 | -0.0065847179 |
s(spei_12m).4 | -0.0885312162 |
s(spei_12m).5 | -0.0581912203 |
s(spei_12m).6 | -0.0806402923 |
s(spei_12m).7 | 0.1057150603 |
s(spei_12m).8 | -0.2442711815 |
s(spei_12m).9 | 0.1468669760 |
te(gini_index,gdp_per_capita).1 | -1.6244911899 |
te(gini_index,gdp_per_capita).2 | -1.5847321301 |
te(gini_index,gdp_per_capita).3 | -1.7494039820 |
te(gini_index,gdp_per_capita).4 | -6.4660633495 |
te(gini_index,gdp_per_capita).5 | 0.5195019300 |
te(gini_index,gdp_per_capita).6 | -0.5313888507 |
te(gini_index,gdp_per_capita).7 | 0.2441984168 |
te(gini_index,gdp_per_capita).8 | -1.2615638272 |
te(gini_index,gdp_per_capita).9 | -1.4187424175 |
te(gini_index,gdp_per_capita).10 | 0.9062595744 |
te(gini_index,gdp_per_capita).11 | -0.2800883858 |
te(gini_index,gdp_per_capita).12 | 0.3837968500 |
te(gini_index,gdp_per_capita).13 | -0.6596128025 |
te(gini_index,gdp_per_capita).14 | 0.5587018868 |
te(gini_index,gdp_per_capita).15 | 1.2073993878 |
te(gini_index,gdp_per_capita).16 | -0.2427876021 |
te(gini_index,gdp_per_capita).17 | 0.4055660936 |
te(gini_index,gdp_per_capita).18 | -0.4269965282 |
te(gini_index,gdp_per_capita).19 | 2.6472656705 |
te(gini_index,gdp_per_capita).20 | 1.0666189452 |
te(gini_index,gdp_per_capita).21 | 0.9452035344 |
te(gini_index,gdp_per_capita).22 | 0.5197094667 |
te(gini_index,gdp_per_capita).23 | 0.0429825668 |
te(gini_index,gdp_per_capita).24 | 11.0831017085 |
s(year).1 | -0.0711228534 |
s(year).2 | 0.4596505420 |
s(year).3 | 0.2820389987 |
s(year).4 | -0.4754027982 |
s(year).5 | -0.0371145136 |
s(year).6 | -0.0675775360 |
s(year).7 | -0.1670595036 |
s(year).8 | 0.8080950099 |
s(year).9 | 0.3299976146 |
Source: Created by the authors.
Code
Code
mbepr_gam_1 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mbepr_gam_1
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | s(year) | |
---|---|---|---|---|
worst | 0 | 0.4770190857 | 0.2677465897 | 0.5397261306 |
observed | 0 | 0.3569024814 | 0.1157635580 | 0.2424992666 |
estimate | 0 | 0.3531843424 | 0.0059174314 | 0.3881346845 |
Source: Created by the authors.
Code
mbepr_gam_1 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [0.0001829743545,0.03172224348]
#> (score -115137.8011 & scale 1).
#> Hessian positive definite, eigenvalue range [1.649447049,24839.07777].
#> Model rank = 43 / 43
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.07 0.98 0.27
#> te(gini_index,gdp_per_capita) 24.00 18.62 0.92 <2e-16 ***
#> s(year) 9.00 8.80 0.95 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_gam_1,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_1
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
beipr_gam_1 <- mgcv::gam(
beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
beipr_gam_1 |> summary()
#>
#> Family: Beta regression(34.215)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.699942058 0.002646283 -1020.277 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.113772 8.795871 67.86174 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 19.048743 19.926989 15022.83051 < 2.22e-16 ***
#> s(year) 8.278716 8.853832 1034.80207 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.15 Deviance explained = 23.6%
#> -REML = -1.1148e+05 Scale est. = 1 n = 57487
Code
beipr_gam_1 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
beipr_gam_1
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.1497282092 | moderate | cohen1988 |
SE | 0.0026263114 | NA | NA |
Lower CI | 0.1445807335 | moderate | cohen1988 |
Upper CI | 0.1548756849 | moderate | cohen1988 |
Source: Created by the authors.
Code
beipr_gam_1 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
beipr_gam_1
model.
Value | |
---|---|
df | 36.4412309248 |
logLik | 111581.1536547750 |
AIC | -223084.3900556297 |
BIC | -222735.3474792330 |
deviance | 58669.3274756479 |
df.residual | 57450.5587690752 |
nobs | 57487.0000000000 |
adj.r.squared | 0.1497282092 |
npar | 43.0000000000 |
Source: Created by the authors.
Code
beipr_gam_1 |>
summarise_coefs() |>
md_named_tibble()
beipr_gam_1
model.
Value | |
---|---|
[Mean] | -0.0419216773 |
mean((Intercept)) | -2.6999420578 |
mean(s(spei_12m)) | -0.0766752454 |
mean(te(gini_index,gdp_per_capita)) | 0.0336251784 |
mean(s(year)) | 0.0867092067 |
s(spei_12m).1 | -0.1101197021 |
s(spei_12m).2 | 0.2344515176 |
s(spei_12m).3 | -0.0768654857 |
s(spei_12m).4 | -0.2017190980 |
s(spei_12m).5 | -0.1265585495 |
s(spei_12m).6 | -0.1301956497 |
s(spei_12m).7 | 0.0676235130 |
s(spei_12m).8 | -0.5264730009 |
s(spei_12m).9 | 0.1797792471 |
te(gini_index,gdp_per_capita).1 | -1.3503750007 |
te(gini_index,gdp_per_capita).2 | -1.4491374357 |
te(gini_index,gdp_per_capita).3 | -1.6295942969 |
te(gini_index,gdp_per_capita).4 | 3.2875534527 |
te(gini_index,gdp_per_capita).5 | 0.5031809115 |
te(gini_index,gdp_per_capita).6 | -0.2959885521 |
te(gini_index,gdp_per_capita).7 | -0.0265823918 |
te(gini_index,gdp_per_capita).8 | -0.7470705761 |
te(gini_index,gdp_per_capita).9 | 1.0409557550 |
te(gini_index,gdp_per_capita).10 | 0.7843553477 |
te(gini_index,gdp_per_capita).11 | -0.0939137738 |
te(gini_index,gdp_per_capita).12 | 0.1637072489 |
te(gini_index,gdp_per_capita).13 | -0.3325629781 |
te(gini_index,gdp_per_capita).14 | 0.2348252955 |
te(gini_index,gdp_per_capita).15 | 1.1091742536 |
te(gini_index,gdp_per_capita).16 | 0.0230070166 |
te(gini_index,gdp_per_capita).17 | 0.2583346612 |
te(gini_index,gdp_per_capita).18 | -0.1446366421 |
te(gini_index,gdp_per_capita).19 | -0.4934752137 |
te(gini_index,gdp_per_capita).20 | 0.8041976369 |
te(gini_index,gdp_per_capita).21 | 1.1463708150 |
te(gini_index,gdp_per_capita).22 | 0.7540424907 |
te(gini_index,gdp_per_capita).23 | 0.4418518020 |
te(gini_index,gdp_per_capita).24 | -3.1812155452 |
s(year).1 | 0.0259625945 |
s(year).2 | 0.3763706703 |
s(year).3 | 0.2034343857 |
s(year).4 | -0.3631617364 |
s(year).5 | 0.0120994116 |
s(year).6 | -0.1580923751 |
s(year).7 | -0.1004425064 |
s(year).8 | 0.6375605153 |
s(year).9 | 0.1466519006 |
Source: Created by the authors.
Code
beipr_gam_1 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
beipr_gam_1
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | s(year) | |
---|---|---|---|---|
worst | 0 | 0.4770190857 | 0.2677465897 | 0.5397261306 |
observed | 0 | 0.0245495092 | 0.1055510497 | 0.3636696980 |
estimate | 0 | 0.3531843424 | 0.0059174314 | 0.3881346845 |
Source: Created by the authors.
Code
beipr_gam_1 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-0.0001727823052,0.05747242912]
#> (score -111476.2592 & scale 1).
#> Hessian positive definite, eigenvalue range [2.144566396,26992.30096].
#> Model rank = 43 / 43
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.11 1.00 0.74
#> te(gini_index,gdp_per_capita) 24.00 19.05 0.91 <2e-16 ***
#> s(year) 9.00 8.28 1.00 0.73
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = beipr_gam_1,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_1
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mbepr_beipr_gam_1 <- mgcv::gam(
mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mbepr_beipr_gam_1 |> summary()
#>
#> Family: Beta regression(21.15)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.008487621 0.002582764 -777.6504 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.128848 8.202065 34.50121 0.000032104
#> te(gini_index,gdp_per_capita) 19.170675 19.998225 13833.01156 < 2.22e-16
#> s(year) 8.629334 8.958357 543.76224 < 2.22e-16
#>
#> s(spei_12m) ***
#> te(gini_index,gdp_per_capita) ***
#> s(year) ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.163 Deviance explained = 22%
#> -REML = -79097 Scale est. = 1 n = 57487
Code
mbepr_beipr_gam_1 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
mbepr_beipr_gam_1
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.1626124024 | moderate | cohen1988 |
SE | 0.0026955040 | NA | NA |
Lower CI | 0.1573293116 | moderate | cohen1988 |
Upper CI | 0.1678954933 | moderate | cohen1988 |
Source: Created by the authors.
Code
mbepr_beipr_gam_1 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_beipr_gam_1
model.
Value | |
---|---|
df | 35.9288574119 |
logLik | 79202.1605827943 |
AIC | -158326.1775691864 |
BIC | -157976.1210560932 |
deviance | 56958.1590159663 |
df.residual | 57451.0711425881 |
nobs | 57487.0000000000 |
adj.r.squared | 0.1626124024 |
npar | 43.0000000000 |
Source: Created by the authors.
Code
mbepr_beipr_gam_1 |>
summarise_coefs() |>
md_named_tibble()
mbepr_beipr_gam_1
model.
Value | |
---|---|
[Mean] | -0.0183624107 |
mean((Intercept)) | -2.0084876210 |
mean(s(spei_12m)) | -0.0322160284 |
mean(te(gini_index,gdp_per_capita)) | 0.0300636509 |
mean(s(year)) | 0.0874800663 |
s(spei_12m).1 | -0.0589245986 |
s(spei_12m).2 | 0.1052533834 |
s(spei_12m).3 | -0.0263073702 |
s(spei_12m).4 | -0.0963728003 |
s(spei_12m).5 | -0.0505908021 |
s(spei_12m).6 | -0.0465566451 |
s(spei_12m).7 | 0.0434844563 |
s(spei_12m).8 | -0.2399507558 |
s(spei_12m).9 | 0.0800208769 |
te(gini_index,gdp_per_capita).1 | -1.2750487424 |
te(gini_index,gdp_per_capita).2 | -1.3318567140 |
te(gini_index,gdp_per_capita).3 | -1.5263092999 |
te(gini_index,gdp_per_capita).4 | 1.3266500466 |
te(gini_index,gdp_per_capita).5 | 0.4182047314 |
te(gini_index,gdp_per_capita).6 | -0.3131240773 |
te(gini_index,gdp_per_capita).7 | 0.0834097668 |
te(gini_index,gdp_per_capita).8 | -0.7902618839 |
te(gini_index,gdp_per_capita).9 | 0.3809854248 |
te(gini_index,gdp_per_capita).10 | 0.7129132967 |
te(gini_index,gdp_per_capita).11 | -0.1627929837 |
te(gini_index,gdp_per_capita).12 | 0.1769882473 |
te(gini_index,gdp_per_capita).13 | -0.4267131690 |
te(gini_index,gdp_per_capita).14 | 0.0890376270 |
te(gini_index,gdp_per_capita).15 | 1.1012828359 |
te(gini_index,gdp_per_capita).16 | -0.0534125655 |
te(gini_index,gdp_per_capita).17 | 0.2578741727 |
te(gini_index,gdp_per_capita).18 | -0.2290292287 |
te(gini_index,gdp_per_capita).19 | -0.0938482379 |
te(gini_index,gdp_per_capita).20 | 0.8401002858 |
te(gini_index,gdp_per_capita).21 | 1.1420312399 |
te(gini_index,gdp_per_capita).22 | 0.6997343008 |
te(gini_index,gdp_per_capita).23 | 0.3062913378 |
te(gini_index,gdp_per_capita).24 | -0.6115787895 |
s(year).1 | -0.0394585320 |
s(year).2 | 0.3546575568 |
s(year).3 | 0.2276277581 |
s(year).4 | -0.3856775655 |
s(year).5 | -0.0140028171 |
s(year).6 | -0.0967606679 |
s(year).7 | -0.1083146350 |
s(year).8 | 0.6176753704 |
s(year).9 | 0.2315741284 |
Source: Created by the authors.
Code
Code
mbepr_beipr_gam_1 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mbepr_beipr_gam_1
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | s(year) | |
---|---|---|---|---|
worst | 0 | 0.4770190857 | 0.2677465897 | 0.5397261306 |
observed | 0 | 0.1587646960 | 0.1143136157 | 0.2472117173 |
estimate | 0 | 0.3531843424 | 0.0059174314 | 0.3881346845 |
Source: Created by the authors.
Code
mbepr_beipr_gam_1 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [-0.004141121489,0.04358172276]
#> (score -79097.09397 & scale 1).
#> Hessian positive definite, eigenvalue range [1.464378814,28213.38369].
#> Model rank = 43 / 43
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 7.13 1.00 0.67
#> te(gini_index,gdp_per_capita) 24.00 19.17 0.93 <2e-16 ***
#> s(year) 9.00 8.63 1.01 0.79
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_beipr_gam_1,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_1
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_gam_1 <- mgcv::gam(
maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
maper_gam_1 |> summary()
#>
#> Family: Beta regression(32.913)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.76693840 0.00352565 -1068.438 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.544258 8.942949 430.0758 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.412919 19.309860 12636.7205 < 2.22e-16 ***
#> s(year) 8.866347 8.994460 845.3981 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0244 Deviance explained = 23.1%
#> -REML = -1.6814e+05 Scale est. = 1 n = 57487
Code
maper_gam_1 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
maper_gam_1
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0243704151 | weak | cohen1988 |
SE | 0.0012157746 | NA | NA |
Lower CI | 0.0219875407 | weak | cohen1988 |
Upper CI | 0.0267532895 | weak | cohen1988 |
Source: Created by the authors.
Code
maper_gam_1 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_gam_1
model.
Value | |
---|---|
df | 36.8235234757 |
logLik | 168252.9266265731 |
AIC | -336427.3587149690 |
BIC | -336075.7301030770 |
deviance | 60454.6637911227 |
df.residual | 57450.1764765243 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0243704151 |
npar | 43.0000000000 |
Source: Created by the authors.
Code
maper_gam_1 |>
summarise_coefs() |>
md_named_tibble()
maper_gam_1
model.
Value | |
---|---|
[Mean] | 0.1399982388 |
mean((Intercept)) | -3.7669383968 |
mean(s(spei_12m)) | -0.0601972808 |
mean(te(gini_index,gdp_per_capita)) | 0.3926704700 |
mean(s(year)) | 0.1005052127 |
s(spei_12m).1 | -0.3067501527 |
s(spei_12m).2 | 0.2017207337 |
s(spei_12m).3 | -0.0631267373 |
s(spei_12m).4 | -0.1910189481 |
s(spei_12m).5 | -0.1636658702 |
s(spei_12m).6 | -0.1590892614 |
s(spei_12m).7 | 0.1717193978 |
s(spei_12m).8 | -0.4263065278 |
s(spei_12m).9 | 0.3947418387 |
te(gini_index,gdp_per_capita).1 | -1.4911773920 |
te(gini_index,gdp_per_capita).2 | -1.3581436039 |
te(gini_index,gdp_per_capita).3 | -1.4774423615 |
te(gini_index,gdp_per_capita).4 | -12.1110017638 |
te(gini_index,gdp_per_capita).5 | 0.9152930441 |
te(gini_index,gdp_per_capita).6 | -0.4235406721 |
te(gini_index,gdp_per_capita).7 | 0.1083243566 |
te(gini_index,gdp_per_capita).8 | -1.2994548934 |
te(gini_index,gdp_per_capita).9 | -2.5439000014 |
te(gini_index,gdp_per_capita).10 | 0.9575885827 |
te(gini_index,gdp_per_capita).11 | -0.1370103528 |
te(gini_index,gdp_per_capita).12 | 0.3635238582 |
te(gini_index,gdp_per_capita).13 | -0.6408604575 |
te(gini_index,gdp_per_capita).14 | 1.1413856567 |
te(gini_index,gdp_per_capita).15 | 1.1394645722 |
te(gini_index,gdp_per_capita).16 | -0.0902727280 |
te(gini_index,gdp_per_capita).17 | 0.4330091727 |
te(gini_index,gdp_per_capita).18 | -0.3696529479 |
te(gini_index,gdp_per_capita).19 | 5.0200190826 |
te(gini_index,gdp_per_capita).20 | 0.5537786978 |
te(gini_index,gdp_per_capita).21 | 0.2545324002 |
te(gini_index,gdp_per_capita).22 | 0.0430225554 |
te(gini_index,gdp_per_capita).23 | -0.3344280316 |
te(gini_index,gdp_per_capita).24 | 20.7710345058 |
s(year).1 | 0.0085826753 |
s(year).2 | 0.2971150578 |
s(year).3 | 0.1988664847 |
s(year).4 | -0.3217694793 |
s(year).5 | -0.0497613524 |
s(year).6 | 0.1259948722 |
s(year).7 | -0.1345460408 |
s(year).8 | 0.5203674542 |
s(year).9 | 0.2596972424 |
Source: Created by the authors.
Code
maper_gam_1 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
maper_gam_1
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | s(year) | |
---|---|---|---|---|
worst | 0 | 0.4770190857 | 0.2677465897 | 0.5397261306 |
observed | 0 | 0.4173857515 | 0.1308487412 | 0.1741781643 |
estimate | 0 | 0.3531843424 | 0.0059174314 | 0.3881346845 |
Source: Created by the authors.
Code
maper_gam_1 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-0.002566588594,0.05796573118]
#> (score -168143.8485 & scale 1).
#> Hessian positive definite, eigenvalue range [1.947920257,20956.10516].
#> Model rank = 43 / 43
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.54 0.99 0.37
#> te(gini_index,gdp_per_capita) 24.00 18.41 0.94 <2e-16 ***
#> s(year) 9.00 8.87 0.99 0.35
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_gam_1,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER"
)
maper_gam_1
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mpepr_gam_1 <- mgcv::gam(
mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mpepr_gam_1 |> summary()
#>
#> Family: Beta regression(41.368)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.610157798 0.003226851 -1118.787 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.446656 8.916742 541.3227 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.893390 19.658659 12964.8648 < 2.22e-16 ***
#> s(year) 8.707845 8.974484 889.9991 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0101 Deviance explained = 24.1%
#> -REML = -1.5533e+05 Scale est. = 1 n = 57487
Code
mpepr_gam_1 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
mpepr_gam_1
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0101356080 | very weak (negligible) | cohen1988 |
SE | 0.0007954946 | NA | NA |
Lower CI | 0.0085764673 | very weak (negligible) | cohen1988 |
Upper CI | 0.0116947488 | very weak (negligible) | cohen1988 |
Source: Created by the authors.
Code
mpepr_gam_1 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mpepr_gam_1
model.
Value | |
---|---|
df | 37.047890892 |
logLik | 155444.711991594 |
AIC | -310810.324213421 |
BIC | -310455.984371563 |
deviance | 61153.661249646 |
df.residual | 57449.952109108 |
nobs | 57487.000000000 |
adj.r.squared | 0.010135608 |
npar | 43.000000000 |
Source: Created by the authors.
Code
mpepr_gam_1 |>
summarise_coefs() |>
md_named_tibble()
mpepr_gam_1
model.
Value | |
---|---|
[Mean] | 0.1025877006 |
mean((Intercept)) | -3.6101577983 |
mean(s(spei_12m)) | -0.0402416288 |
mean(te(gini_index,gdp_per_capita)) | 0.3008621581 |
mean(s(year)) | 0.1292124209 |
s(spei_12m).1 | -0.2450314665 |
s(spei_12m).2 | 0.1157573046 |
s(spei_12m).3 | -0.0398815952 |
s(spei_12m).4 | -0.1392586046 |
s(spei_12m).5 | -0.1361690502 |
s(spei_12m).6 | -0.0996227971 |
s(spei_12m).7 | 0.1232645829 |
s(spei_12m).8 | -0.2444884771 |
s(spei_12m).9 | 0.3032554441 |
te(gini_index,gdp_per_capita).1 | -2.0873850377 |
te(gini_index,gdp_per_capita).2 | -1.6255625578 |
te(gini_index,gdp_per_capita).3 | -1.6750306585 |
te(gini_index,gdp_per_capita).4 | -9.1258398420 |
te(gini_index,gdp_per_capita).5 | 0.9691872796 |
te(gini_index,gdp_per_capita).6 | -0.6722444860 |
te(gini_index,gdp_per_capita).7 | 0.4922946806 |
te(gini_index,gdp_per_capita).8 | -1.8142795252 |
te(gini_index,gdp_per_capita).9 | -1.6904935670 |
te(gini_index,gdp_per_capita).10 | 1.0326136121 |
te(gini_index,gdp_per_capita).11 | -0.4600900907 |
te(gini_index,gdp_per_capita).12 | 0.6349975163 |
te(gini_index,gdp_per_capita).13 | -0.9566096774 |
te(gini_index,gdp_per_capita).14 | 1.1854039464 |
te(gini_index,gdp_per_capita).15 | 1.0830260323 |
te(gini_index,gdp_per_capita).16 | -0.5105269839 |
te(gini_index,gdp_per_capita).17 | 0.5704829496 |
te(gini_index,gdp_per_capita).18 | -0.7049306699 |
te(gini_index,gdp_per_capita).19 | 4.3564573432 |
te(gini_index,gdp_per_capita).20 | 0.2690026542 |
te(gini_index,gdp_per_capita).21 | 0.1254471370 |
te(gini_index,gdp_per_capita).22 | 0.1787205634 |
te(gini_index,gdp_per_capita).23 | -0.0374899153 |
te(gini_index,gdp_per_capita).24 | 17.6835410906 |
s(year).1 | 0.0345025014 |
s(year).2 | 0.5998032963 |
s(year).3 | 0.1690266623 |
s(year).4 | -0.3643933415 |
s(year).5 | -0.0081681610 |
s(year).6 | -0.0670963000 |
s(year).7 | -0.1374538828 |
s(year).8 | 0.8026003891 |
s(year).9 | 0.1340906240 |
Source: Created by the authors.
Code
mpepr_gam_1 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mpepr_gam_1
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | s(year) | |
---|---|---|---|---|
worst | 0 | 0.4770190857 | 0.2677465897 | 0.5397261306 |
observed | 0 | 0.4273963435 | 0.1270217750 | 0.3024317474 |
estimate | 0 | 0.3531843424 | 0.0059174314 | 0.3881346845 |
Source: Created by the authors.
Code
mpepr_gam_1 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 7 iterations.
#> Gradient range [-0.0000009178845293,0.0003205040664]
#> (score -155334.1792 & scale 1).
#> Hessian positive definite, eigenvalue range [2.255307833,23470.11315].
#> Model rank = 43 / 43
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.45 1.00 0.63
#> te(gini_index,gdp_per_capita) 24.00 18.89 0.95 <2e-16 ***
#> s(year) 9.00 8.71 0.99 0.56
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mpepr_gam_1,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_1
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_mpepr_gam_1 <- mgcv::gam(
maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
maper_mpepr_gam_1 |> summary()
#>
#> Family: Beta regression(27.286)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.947655546 0.003075965 -958.2864 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.538532 8.941460 524.1370 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.824892 19.596732 12360.7378 < 2.22e-16 ***
#> s(year) 8.805392 8.988451 658.9538 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.059 Deviance explained = 23.5%
#> -REML = -1.1924e+05 Scale est. = 1 n = 57487
Code
maper_mpepr_gam_1 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
maper_mpepr_gam_1
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0589991868 | weak | cohen1988 |
SE | 0.0018245243 | NA | NA |
Lower CI | 0.0554231850 | weak | cohen1988 |
Upper CI | 0.0625751886 | weak | cohen1988 |
Source: Created by the authors.
Code
maper_mpepr_gam_1 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_mpepr_gam_1
model.
Value | |
---|---|
df | 37.1688160684 |
logLik | 119354.6893883109 |
AIC | -238630.4492413757 |
BIC | -238276.8719917944 |
deviance | 59348.9925349746 |
df.residual | 57449.8311839316 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0589991868 |
npar | 43.0000000000 |
Source: Created by the authors.
Code
maper_mpepr_gam_1 |>
summarise_coefs() |>
md_named_tibble()
maper_mpepr_gam_1
model.
Value | |
---|---|
[Mean] | 0.1237718546 |
mean((Intercept)) | -2.9476555461 |
mean(s(spei_12m)) | -0.0078315191 |
mean(te(gini_index,gdp_per_capita)) | 0.3081065337 |
mean(s(year)) | 0.1050857951 |
s(spei_12m).1 | -0.2267013030 |
s(spei_12m).2 | 0.0301554948 |
s(spei_12m).3 | -0.0136014004 |
s(spei_12m).4 | -0.0845160671 |
s(spei_12m).5 | -0.0902434852 |
s(spei_12m).6 | -0.0498487762 |
s(spei_12m).7 | 0.1336120799 |
s(spei_12m).8 | -0.0625674280 |
s(spei_12m).9 | 0.2932272138 |
te(gini_index,gdp_per_capita).1 | -1.8281372697 |
te(gini_index,gdp_per_capita).2 | -1.5880975076 |
te(gini_index,gdp_per_capita).3 | -1.6883134236 |
te(gini_index,gdp_per_capita).4 | -9.0474875346 |
te(gini_index,gdp_per_capita).5 | 0.9825896689 |
te(gini_index,gdp_per_capita).6 | -0.4621766458 |
te(gini_index,gdp_per_capita).7 | 0.3170887390 |
te(gini_index,gdp_per_capita).8 | -1.4169577414 |
te(gini_index,gdp_per_capita).9 | -1.7626813837 |
te(gini_index,gdp_per_capita).10 | 0.8992559568 |
te(gini_index,gdp_per_capita).11 | -0.2844813519 |
te(gini_index,gdp_per_capita).12 | 0.4712581740 |
te(gini_index,gdp_per_capita).13 | -0.7349169524 |
te(gini_index,gdp_per_capita).14 | 1.0438577036 |
te(gini_index,gdp_per_capita).15 | 1.0080022914 |
te(gini_index,gdp_per_capita).16 | -0.3026318396 |
te(gini_index,gdp_per_capita).17 | 0.4467196191 |
te(gini_index,gdp_per_capita).18 | -0.5201093472 |
te(gini_index,gdp_per_capita).19 | 4.1528809123 |
te(gini_index,gdp_per_capita).20 | 0.2132728208 |
te(gini_index,gdp_per_capita).21 | 0.1387251800 |
te(gini_index,gdp_per_capita).22 | 0.1892600911 |
te(gini_index,gdp_per_capita).23 | -0.0519539879 |
te(gini_index,gdp_per_capita).24 | 17.2195906370 |
s(year).1 | -0.0007499275 |
s(year).2 | 0.4069062514 |
s(year).3 | 0.1525022364 |
s(year).4 | -0.2910279875 |
s(year).5 | -0.0598670057 |
s(year).6 | 0.0471691910 |
s(year).7 | -0.0943570966 |
s(year).8 | 0.5568415437 |
s(year).9 | 0.2283549511 |
Source: Created by the authors.
Code
Code
maper_mpepr_gam_1 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
maper_mpepr_gam_1
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | s(year) | |
---|---|---|---|---|
worst | 0 | 0.4770190857 | 0.2677465897 | 0.5397261306 |
observed | 0 | 0.4193743273 | 0.1314817650 | 0.1822758508 |
estimate | 0 | 0.3531843424 | 0.0059174314 | 0.3881346845 |
Source: Created by the authors.
Code
maper_mpepr_gam_1 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [0.00001277267179,0.0003409827549]
#> (score -119241.8122 & scale 1).
#> Hessian positive definite, eigenvalue range [2.102539349,25227.75575].
#> Model rank = 43 / 43
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.54 1.0 0.81
#> te(gini_index,gdp_per_capita) 24.00 18.82 0.9 <2e-16 ***
#> s(year) 9.00 8.81 1.0 0.67
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_mpepr_gam_1,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_1
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By s(spei_12m)
+ s(gini_index)
+ s(gdp_per_capita)
+ s(year)
(Ordered year
)
Code
mbepr_gam_2 <- mgcv::gam(
mbepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mbepr_gam_2 |> summary()
#>
#> Family: Beta regression(22.871)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.886877872 0.003194629 -903.6661 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.654071 8.558458 73.4249 < 2.22e-16 ***
#> s(gini_index) 7.262359 8.275341 5236.4183 < 2.22e-16 ***
#> s(gdp_per_capita) 8.918150 8.997777 3264.4827 < 2.22e-16 ***
#> s(year) 8.776038 8.984419 754.2061 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0598 Deviance explained = 21.2%
#> -REML = -1.1503e+05 Scale est. = 1 n = 57487
Code
mbepr_gam_2 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
mbepr_gam_2
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0597899173 | weak | cohen1988 |
SE | 0.0018351667 | NA | NA |
Lower CI | 0.0561930567 | weak | cohen1988 |
Upper CI | 0.0633867778 | weak | cohen1988 |
Source: Created by the authors.
Code
mbepr_gam_2 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_gam_2
model.
Value | |
---|---|
df | 33.6106175536 |
logLik | 115136.5073187729 |
AIC | -230199.3826478547 |
BIC | -229869.5365856044 |
deviance | 58958.1522521916 |
df.residual | 57453.3893824464 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0597899173 |
npar | 37.0000000000 |
Source: Created by the authors.
Code
mbepr_gam_2 |>
summarise_coefs() |>
md_named_tibble()
mbepr_gam_2
model.
Value | |
---|---|
[Mean] | -0.1878113552 |
mean((Intercept)) | -2.8868778720 |
mean(s(spei_12m)) | -0.0235382504 |
mean(s(gini_index)) | 0.1178593530 |
mean(s(gdp_per_capita)) | -0.6616448571 |
mean(s(year)) | 0.1159746133 |
s(spei_12m).1 | -0.0910235803 |
s(spei_12m).2 | 0.0750220527 |
s(spei_12m).3 | -0.0029390783 |
s(spei_12m).4 | -0.0712429570 |
s(spei_12m).5 | -0.0463562579 |
s(spei_12m).6 | -0.0650884215 |
s(spei_12m).7 | 0.0784453533 |
s(spei_12m).8 | -0.1939721903 |
s(spei_12m).9 | 0.1053108259 |
s(gini_index).1 | 0.1430160763 |
s(gini_index).2 | 0.0352323322 |
s(gini_index).3 | 0.0009281176 |
s(gini_index).4 | 0.0246269547 |
s(gini_index).5 | -0.0100945883 |
s(gini_index).6 | 0.0330929263 |
s(gini_index).7 | 0.0383559333 |
s(gini_index).8 | 0.4087814524 |
s(gini_index).9 | 0.3867949729 |
s(gdp_per_capita).1 | -0.5224946350 |
s(gdp_per_capita).2 | -2.4690224211 |
s(gdp_per_capita).3 | 0.7288028211 |
s(gdp_per_capita).4 | -1.6969395709 |
s(gdp_per_capita).5 | -0.4895814393 |
s(gdp_per_capita).6 | 1.3070491335 |
s(gdp_per_capita).7 | -0.9303827139 |
s(gdp_per_capita).8 | -1.1504527151 |
s(gdp_per_capita).9 | -0.7317821735 |
s(year).1 | -0.0742626346 |
s(year).2 | 0.4508749359 |
s(year).3 | 0.2790210339 |
s(year).4 | -0.4613948114 |
s(year).5 | -0.0443842844 |
s(year).6 | -0.0726870300 |
s(year).7 | -0.1580558239 |
s(year).8 | 0.7862427724 |
s(year).9 | 0.3384173618 |
Source: Created by the authors.
Code
mbepr_gam_2 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mbepr_gam_2
model terms.
para | s(spei_12m) | s(gini_index) | s(gdp_per_capita) | s(year) | |
---|---|---|---|---|---|
worst | 0 | 0.4795981952 | 0.1338449767 | 0.3021984737 | 0.5335847306 |
observed | 0 | 0.3447635588 | 0.1188195675 | 0.2991492698 | 0.2171871720 |
estimate | 0 | 0.3543037945 | 0.0820431280 | 0.0450015058 | 0.3766666217 |
Source: Created by the authors.
Code
mbepr_gam_2 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 10 iterations.
#> Gradient range [-0.0001122142154,0.03812593805]
#> (score -115033.2762 & scale 1).
#> Hessian positive definite, eigenvalue range [0.9897071456,24819.19255].
#> Model rank = 37 / 37
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 7.65 0.99 0.29
#> s(gini_index) 9.00 7.26 0.91 <2e-16 ***
#> s(gdp_per_capita) 9.00 8.92 0.99 0.30
#> s(year) 9.00 8.78 0.97 0.09 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_gam_2,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_2
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
beipr_gam_2 <- mgcv::gam(
beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
beipr_gam_2 |> summary()
#>
#> Family: Beta regression(34.043)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.699160949 0.002650251 -1018.455 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.067400 8.775221 66.39775 < 2.22e-16 ***
#> s(gini_index) 7.884197 8.663655 7213.70815 < 2.22e-16 ***
#> s(gdp_per_capita) 8.940753 8.998828 3270.71401 < 2.22e-16 ***
#> s(year) 8.126668 8.790955 968.34735 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.144 Deviance explained = 23.2%
#> -REML = -1.1134e+05 Scale est. = 1 n = 57487
Code
beipr_gam_2 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
beipr_gam_2
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.1442664558 | moderate | cohen1988 |
SE | 0.0025945250 | NA | NA |
Lower CI | 0.1391812802 | moderate | cohen1988 |
Upper CI | 0.1493516314 | moderate | cohen1988 |
Source: Created by the authors.
Code
beipr_gam_2 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
beipr_gam_2
model.
Value | |
---|---|
df | 34.0190178975 |
logLik | 111439.3720057292 |
AIC | -222806.4705874308 |
BIC | -222482.7104334425 |
deviance | 58675.7035309863 |
df.residual | 57452.9809821025 |
nobs | 57487.0000000000 |
adj.r.squared | 0.1442664558 |
npar | 37.0000000000 |
Source: Created by the authors.
Code
beipr_gam_2 |>
summarise_coefs() |>
md_named_tibble()
beipr_gam_2
model.
Value | |
---|---|
[Mean] | -0.1459764566 |
mean((Intercept)) | -2.6991609489 |
mean(s(spei_12m)) | -0.0743927158 |
mean(s(gini_index)) | 0.2153975302 |
mean(s(gdp_per_capita)) | -0.5229498714 |
mean(s(year)) | 0.0817263963 |
s(spei_12m).1 | -0.0934109606 |
s(spei_12m).2 | 0.2224120302 |
s(spei_12m).3 | -0.0784623136 |
s(spei_12m).4 | -0.1944905984 |
s(spei_12m).5 | -0.1209934326 |
s(spei_12m).6 | -0.1252626806 |
s(spei_12m).7 | 0.0581293207 |
s(spei_12m).8 | -0.5037873645 |
s(spei_12m).9 | 0.1663315573 |
s(gini_index).1 | 0.1563282873 |
s(gini_index).2 | 0.1699005142 |
s(gini_index).3 | 0.0361794296 |
s(gini_index).4 | 0.0970133490 |
s(gini_index).5 | -0.0298327072 |
s(gini_index).6 | 0.0676675534 |
s(gini_index).7 | 0.0671506484 |
s(gini_index).8 | 0.9348661802 |
s(gini_index).9 | 0.4393045169 |
s(gdp_per_capita).1 | -0.4336733573 |
s(gdp_per_capita).2 | -2.0426365396 |
s(gdp_per_capita).3 | 0.6051030727 |
s(gdp_per_capita).4 | -1.3806219056 |
s(gdp_per_capita).5 | -0.3760253972 |
s(gdp_per_capita).6 | 1.1591103473 |
s(gdp_per_capita).7 | -0.8124783690 |
s(gdp_per_capita).8 | -0.7659177743 |
s(gdp_per_capita).9 | -0.6594089194 |
s(year).1 | 0.0276132146 |
s(year).2 | 0.3499075685 |
s(year).3 | 0.1945933164 |
s(year).4 | -0.3341807235 |
s(year).5 | 0.0068522981 |
s(year).6 | -0.1519008522 |
s(year).7 | -0.0891540132 |
s(year).8 | 0.5856796882 |
s(year).9 | 0.1461270702 |
Source: Created by the authors.
Code
beipr_gam_2 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
beipr_gam_2
model terms.
para | s(spei_12m) | s(gini_index) | s(gdp_per_capita) | s(year) | |
---|---|---|---|---|---|
worst | 0 | 0.4795981952 | 0.1338449767 | 0.3021984737 | 0.5335847306 |
observed | 0 | 0.0876412335 | 0.1157994246 | 0.2974211431 | 0.3493602137 |
estimate | 0 | 0.3543037945 | 0.0820431280 | 0.0450015058 | 0.3766666217 |
Source: Created by the authors.
Code
beipr_gam_2 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 8 iterations.
#> Gradient range [-0.00000014619678,0.0002278562856]
#> (score -111335.4598 & scale 1).
#> Hessian positive definite, eigenvalue range [2.862768203,26982.22217].
#> Model rank = 37 / 37
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.07 0.98 0.15
#> s(gini_index) 9.00 7.88 0.95 <2e-16 ***
#> s(gdp_per_capita) 9.00 8.94 0.99 0.34
#> s(year) 9.00 8.13 0.98 0.17
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = beipr_gam_2,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_2
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mbepr_beipr_gam_2 <- mgcv::gam(
mbepr_beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mbepr_beipr_gam_2 |> summary()
#>
#> Family: Beta regression(21.044)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.008033978 0.002587403 -776.081 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 2.885253 3.667479 4.81063 0.26293
#> s(gini_index) 8.217415 8.826071 6055.07871 < 2e-16 ***
#> s(gdp_per_capita) 8.945436 8.999001 3532.05147 < 2e-16 ***
#> s(year) 8.580066 8.944272 516.35600 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.156 Deviance explained = 21.5%
#> -REML = -78952 Scale est. = 1 n = 57487
Code
mbepr_beipr_gam_2 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
mbepr_beipr_gam_2
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.1560026170 | moderate | cohen1988 |
SE | 0.0026609926 | NA | NA |
Lower CI | 0.1507871673 | moderate | cohen1988 |
Upper CI | 0.1612180667 | moderate | cohen1988 |
Source: Created by the authors.
Code
mbepr_beipr_gam_2 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_beipr_gam_2
model.
Value | |
---|---|
df | 29.628170989 |
logLik | 79047.552324784 |
AIC | -158030.231001206 |
BIC | -157739.619304498 |
deviance | 56981.298315512 |
df.residual | 57457.371829011 |
nobs | 57487.000000000 |
adj.r.squared | 0.156002617 |
npar | 37.000000000 |
Source: Created by the authors.
Code
mbepr_beipr_gam_2 |>
summarise_coefs() |>
md_named_tibble()
mbepr_beipr_gam_2
model.
Value | |
---|---|
[Mean] | -0.1157075443 |
mean((Intercept)) | -2.0080339781 |
mean(s(spei_12m)) | -0.0053597294 |
mean(s(gini_index)) | 0.2324477831 |
mean(s(gdp_per_capita)) | -0.5654786304 |
mean(s(year)) | 0.0858188921 |
s(spei_12m).1 | -0.0055843968 |
s(spei_12m).2 | 0.0101879946 |
s(spei_12m).3 | -0.0032512963 |
s(spei_12m).4 | -0.0103622095 |
s(spei_12m).5 | -0.0044713595 |
s(spei_12m).6 | -0.0066398029 |
s(spei_12m).7 | 0.0036846151 |
s(spei_12m).8 | -0.0360941295 |
s(spei_12m).9 | 0.0042930202 |
s(gini_index).1 | 0.2070684108 |
s(gini_index).2 | 0.2137252925 |
s(gini_index).3 | -0.0106711307 |
s(gini_index).4 | 0.0962846554 |
s(gini_index).5 | -0.0176159842 |
s(gini_index).6 | 0.0676724404 |
s(gini_index).7 | 0.0604266832 |
s(gini_index).8 | 0.9391139267 |
s(gini_index).9 | 0.5360257542 |
s(gdp_per_capita).1 | -0.4694323558 |
s(gdp_per_capita).2 | -2.1292999871 |
s(gdp_per_capita).3 | 0.6307579541 |
s(gdp_per_capita).4 | -1.4719928255 |
s(gdp_per_capita).5 | -0.4268125919 |
s(gdp_per_capita).6 | 1.2275232884 |
s(gdp_per_capita).7 | -0.8710519816 |
s(gdp_per_capita).8 | -0.9116285124 |
s(gdp_per_capita).9 | -0.6673706623 |
s(year).1 | -0.0393620534 |
s(year).2 | 0.3477673923 |
s(year).3 | 0.2211026244 |
s(year).4 | -0.3693360511 |
s(year).5 | -0.0200155894 |
s(year).6 | -0.0969226100 |
s(year).7 | -0.0996666675 |
s(year).8 | 0.5937080412 |
s(year).9 | 0.2350949424 |
Source: Created by the authors.
Code
Code
mbepr_beipr_gam_2 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mbepr_beipr_gam_2
model terms.
para | s(spei_12m) | s(gini_index) | s(gdp_per_capita) | s(year) | |
---|---|---|---|---|---|
worst | 0 | 0.4795981952 | 0.1338449767 | 0.3021984737 | 0.5335847306 |
observed | 0 | 0.1491822623 | 0.1131783674 | 0.2980759587 | 0.2298067718 |
estimate | 0 | 0.3543037945 | 0.0820431280 | 0.0450015058 | 0.3766666217 |
Source: Created by the authors.
Code
mbepr_beipr_gam_2 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 7 iterations.
#> Gradient range [-0.0000504917562,0.03294763489]
#> (score -78951.67367 & scale 1).
#> Hessian positive definite, eigenvalue range [0.1014636477,28204.51984].
#> Model rank = 37 / 37
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 2.89 0.98 0.18
#> s(gini_index) 9.00 8.22 0.92 <2e-16 ***
#> s(gdp_per_capita) 9.00 8.95 1.00 0.60
#> s(year) 9.00 8.58 0.98 0.10
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_beipr_gam_2,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_2
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_gam_2 <- mgcv::gam(
maper ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
maper_gam_2 |> summary()
#>
#> Family: Beta regression(32.864)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.766420033 0.003526643 -1067.99 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.496389 8.930818 380.4258 < 2.22e-16 ***
#> s(gini_index) 7.558064 8.484290 4672.4302 < 2.22e-16 ***
#> s(gdp_per_capita) 8.890499 8.996056 3929.5614 < 2.22e-16 ***
#> s(year) 8.859707 8.993902 818.0049 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0238 Deviance explained = 23%
#> -REML = -1.6811e+05 Scale est. = 1 n = 57487
Code
maper_gam_2 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
maper_gam_2
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0238182494 | weak | cohen1988 |
SE | 0.0012026029 | NA | NA |
Lower CI | 0.0214611911 | weak | cohen1988 |
Upper CI | 0.0261753077 | weak | cohen1988 |
Source: Created by the authors.
Code
maper_gam_2 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_gam_2
model.
Value | |
---|---|
df | 34.8046584788 |
logLik | 168220.4634580906 |
AIC | -336366.1167851194 |
BIC | -336030.9930535636 |
deviance | 60448.5416249580 |
df.residual | 57452.1953415212 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0238182494 |
npar | 37.0000000000 |
Source: Created by the authors.
Code
maper_gam_2 |>
summarise_coefs() |>
md_named_tibble()
maper_gam_2
model.
Value | |
---|---|
[Mean] | -0.2792066469 |
mean((Intercept)) | -3.7664200327 |
mean(s(spei_12m)) | -0.0583148111 |
mean(s(gini_index)) | -0.0552216475 |
mean(s(gdp_per_capita)) | -0.7113219453 |
mean(s(year)) | 0.0954999704 |
s(spei_12m).1 | -0.2920447301 |
s(spei_12m).2 | 0.1858729417 |
s(spei_12m).3 | -0.0610740274 |
s(spei_12m).4 | -0.1811751734 |
s(spei_12m).5 | -0.1558061932 |
s(spei_12m).6 | -0.1532399435 |
s(spei_12m).7 | 0.1593845859 |
s(spei_12m).8 | -0.4022590954 |
s(spei_12m).9 | 0.3755083355 |
s(gini_index).1 | 0.0225090377 |
s(gini_index).2 | -0.1739941119 |
s(gini_index).3 | -0.0284549068 |
s(gini_index).4 | -0.0859363912 |
s(gini_index).5 | 0.0431282479 |
s(gini_index).6 | -0.0403513992 |
s(gini_index).7 | -0.0270763015 |
s(gini_index).8 | -0.4203896328 |
s(gini_index).9 | 0.2135706306 |
s(gdp_per_capita).1 | -0.5239758997 |
s(gdp_per_capita).2 | -2.7256248184 |
s(gdp_per_capita).3 | 0.8018341275 |
s(gdp_per_capita).4 | -1.6741772173 |
s(gdp_per_capita).5 | -0.5255630826 |
s(gdp_per_capita).6 | 1.2612683840 |
s(gdp_per_capita).7 | -0.9313214639 |
s(gdp_per_capita).8 | -1.3049731873 |
s(gdp_per_capita).9 | -0.7793643500 |
s(year).1 | 0.0116421066 |
s(year).2 | 0.2754688432 |
s(year).3 | 0.1873813865 |
s(year).4 | -0.3000070939 |
s(year).5 | -0.0560918046 |
s(year).6 | 0.1301704984 |
s(year).7 | -0.1251625149 |
s(year).8 | 0.4778893486 |
s(year).9 | 0.2582089640 |
Source: Created by the authors.
Code
maper_gam_2 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
maper_gam_2
model terms.
para | s(spei_12m) | s(gini_index) | s(gdp_per_capita) | s(year) | |
---|---|---|---|---|---|
worst | 0 | 0.4795981952 | 0.1338449767 | 0.3021984737 | 0.5335847306 |
observed | 0 | 0.4148757749 | 0.1237735881 | 0.2999117263 | 0.1514973748 |
estimate | 0 | 0.3543037945 | 0.0820431280 | 0.0450015058 | 0.3766666217 |
Source: Created by the authors.
Code
maper_gam_2 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-0.00000171804112,0.04355198049]
#> (score -168110.8461 & scale 1).
#> Hessian positive definite, eigenvalue range [2.759648793,20957.99243].
#> Model rank = 37 / 37
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.50 1.02 0.95
#> s(gini_index) 9.00 7.56 0.93 <2e-16 ***
#> s(gdp_per_capita) 9.00 8.89 1.00 0.70
#> s(year) 9.00 8.86 1.00 0.61
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_gam_2,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER"
)
maper_gam_2
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mpepr_gam_2 <- mgcv::gam(
mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mpepr_gam_2 |> summary()
#>
#> Family: Beta regression(41.252)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.609346062 0.003228947 -1117.809 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.360768 8.890223 480.4686 < 2.22e-16 ***
#> s(gini_index) 7.968288 8.717491 4849.9069 < 2.22e-16 ***
#> s(gdp_per_capita) 8.915541 8.997634 4110.1116 < 2.22e-16 ***
#> s(year) 8.676508 8.968871 845.3363 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.00881 Deviance explained = 23.9%
#> -REML = -1.5527e+05 Scale est. = 1 n = 57487
Code
mpepr_gam_2 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
mpepr_gam_2
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0088055772 | very weak (negligible) | cohen1988 |
SE | 0.0007424623 | NA | NA |
Lower CI | 0.0073503779 | very weak (negligible) | cohen1988 |
Upper CI | 0.0102607765 | very weak (negligible) | cohen1988 |
Source: Created by the authors.
Code
mpepr_gam_2 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mpepr_gam_2
model.
Value | |
---|---|
df | 34.9211055217 |
logLik | 155378.7508603413 |
AIC | -310682.7526104076 |
BIC | -310347.9022310497 |
deviance | 61141.6359315324 |
df.residual | 57452.0788944782 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0088055772 |
npar | 37.0000000000 |
Source: Created by the authors.
Code
mpepr_gam_2 |>
summarise_coefs() |>
md_named_tibble()
mpepr_gam_2
model.
Value | |
---|---|
[Mean] | -0.2480554696 |
mean((Intercept)) | -3.6093460617 |
mean(s(spei_12m)) | -0.0371263032 |
mean(s(gini_index)) | -0.0265769504 |
mean(s(gdp_per_capita)) | -0.6792928530 |
mean(s(year)) | 0.1242509609 |
s(spei_12m).1 | -0.2288168081 |
s(spei_12m).2 | 0.0957922517 |
s(spei_12m).3 | -0.0383037299 |
s(spei_12m).4 | -0.1261965375 |
s(spei_12m).5 | -0.1260967320 |
s(spei_12m).6 | -0.0905783867 |
s(spei_12m).7 | 0.1084219438 |
s(spei_12m).8 | -0.2100245007 |
s(spei_12m).9 | 0.2816657709 |
s(gini_index).1 | 0.0001173073 |
s(gini_index).2 | -0.1345476864 |
s(gini_index).3 | 0.0494170015 |
s(gini_index).4 | -0.0738737062 |
s(gini_index).5 | -0.0012891949 |
s(gini_index).6 | -0.0186142338 |
s(gini_index).7 | 0.0016647121 |
s(gini_index).8 | -0.1397406762 |
s(gini_index).9 | 0.0776739232 |
s(gdp_per_capita).1 | -0.5200055884 |
s(gdp_per_capita).2 | -2.5826590370 |
s(gdp_per_capita).3 | 0.7966292331 |
s(gdp_per_capita).4 | -1.7413805171 |
s(gdp_per_capita).5 | -0.5004182491 |
s(gdp_per_capita).6 | 1.3075676843 |
s(gdp_per_capita).7 | -0.9182187679 |
s(gdp_per_capita).8 | -1.1764985276 |
s(gdp_per_capita).9 | -0.7786519076 |
s(year).1 | 0.0375201642 |
s(year).2 | 0.5839719284 |
s(year).3 | 0.1596817765 |
s(year).4 | -0.3506644884 |
s(year).5 | -0.0144878621 |
s(year).6 | -0.0668886975 |
s(year).7 | -0.1302572519 |
s(year).8 | 0.7700678829 |
s(year).9 | 0.1293151955 |
Source: Created by the authors.
Code
mpepr_gam_2 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mpepr_gam_2
model terms.
para | s(spei_12m) | s(gini_index) | s(gdp_per_capita) | s(year) | |
---|---|---|---|---|---|
worst | 0 | 0.4795981952 | 0.1338449767 | 0.3021984737 | 0.5335847306 |
observed | 0 | 0.4275231049 | 0.1129232857 | 0.2988117419 | 0.2805478575 |
estimate | 0 | 0.3543037945 | 0.0820431280 | 0.0450015058 | 0.3766666217 |
Source: Created by the authors.
Code
mpepr_gam_2 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-0.00005952289556,0.0262368464]
#> (score -155270.4773 & scale 1).
#> Hessian positive definite, eigenvalue range [2.610108983,23473.63132].
#> Model rank = 37 / 37
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.36 0.98 0.17
#> s(gini_index) 9.00 7.97 0.94 <2e-16 ***
#> s(gdp_per_capita) 9.00 8.92 0.98 0.42
#> s(year) 9.00 8.68 0.99 0.58
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mpepr_gam_2,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_2
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_mpepr_gam_2 <- mgcv::gam(
maper_mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
maper_mpepr_gam_2 |> summary()
#>
#> Family: Beta regression(27.223)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.947086170 0.003077737 -957.5498 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.453782 8.918970 456.7131 < 2.22e-16 ***
#> s(gini_index) 7.773780 8.610482 4451.1916 < 2.22e-16 ***
#> s(gdp_per_capita) 8.904233 8.996973 4179.0657 < 2.22e-16 ***
#> s(year) 8.792083 8.986834 619.3467 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0588 Deviance explained = 23.4%
#> -REML = -1.1919e+05 Scale est. = 1 n = 57487
Code
maper_mpepr_gam_2 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
maper_mpepr_gam_2
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0588212718 | weak | cohen1988 |
SE | 0.0018221156 | NA | NA |
Lower CI | 0.0552499907 | weak | cohen1988 |
Upper CI | 0.0623925528 | weak | cohen1988 |
Source: Created by the authors.
Code
maper_mpepr_gam_2 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_mpepr_gam_2
model.
Value | |
---|---|
df | 34.9238787778 |
logLik | 119297.8581185657 |
AIC | -238521.4212334060 |
BIC | -238188.6050956577 |
deviance | 59340.4133720964 |
df.residual | 57452.0761212222 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0588212718 |
npar | 37.0000000000 |
Source: Created by the authors.
Code
maper_mpepr_gam_2 |>
summarise_coefs() |>
md_named_tibble()
maper_mpepr_gam_2
model.
Value | |
---|---|
[Mean] | -0.2047959854 |
mean((Intercept)) | -2.9470861703 |
mean(s(spei_12m)) | -0.0056348325 |
mean(s(gini_index)) | 0.0176186174 |
mean(s(gdp_per_capita)) | -0.6266456198 |
mean(s(year)) | 0.1001768027 |
s(spei_12m).1 | -0.2086972343 |
s(spei_12m).2 | 0.0120951159 |
s(spei_12m).3 | -0.0115387171 |
s(spei_12m).4 | -0.0718479832 |
s(spei_12m).5 | -0.0801528804 |
s(spei_12m).6 | -0.0425151884 |
s(spei_12m).7 | 0.1176090578 |
s(spei_12m).8 | -0.0332366558 |
s(spei_12m).9 | 0.2675709933 |
s(gini_index).1 | 0.0906054927 |
s(gini_index).2 | -0.0748981811 |
s(gini_index).3 | 0.0086193896 |
s(gini_index).4 | -0.0560200412 |
s(gini_index).5 | 0.0149105583 |
s(gini_index).6 | -0.0171307757 |
s(gini_index).7 | 0.0058957205 |
s(gini_index).8 | -0.0405680360 |
s(gini_index).9 | 0.2271534294 |
s(gdp_per_capita).1 | -0.4646201848 |
s(gdp_per_capita).2 | -2.4058833427 |
s(gdp_per_capita).3 | 0.7151488815 |
s(gdp_per_capita).4 | -1.5319735633 |
s(gdp_per_capita).5 | -0.4687101039 |
s(gdp_per_capita).6 | 1.2140939531 |
s(gdp_per_capita).7 | -0.8491763627 |
s(gdp_per_capita).8 | -1.1344506633 |
s(gdp_per_capita).9 | -0.7142391918 |
s(year).1 | 0.0034666403 |
s(year).2 | 0.3883516167 |
s(year).3 | 0.1426389583 |
s(year).4 | -0.2742003967 |
s(year).5 | -0.0663262825 |
s(year).6 | 0.0498968448 |
s(year).7 | -0.0863577928 |
s(year).8 | 0.5190502091 |
s(year).9 | 0.2250714269 |
Source: Created by the authors.
Code
Code
maper_mpepr_gam_2 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
maper_mpepr_gam_2
model terms.
para | s(spei_12m) | s(gini_index) | s(gdp_per_capita) | s(year) | |
---|---|---|---|---|---|
worst | 0 | 0.4795981952 | 0.1338449767 | 0.3021984737 | 0.5335847306 |
observed | 0 | 0.4189202181 | 0.1112120294 | 0.3010065848 | 0.1593561727 |
estimate | 0 | 0.3543037945 | 0.0820431280 | 0.0450015058 | 0.3766666217 |
Source: Created by the authors.
Code
maper_mpepr_gam_2 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [0.00000001880231615,0.000005275823804]
#> (score -119188.1318 & scale 1).
#> Hessian positive definite, eigenvalue range [2.554808805,25231.46456].
#> Model rank = 37 / 37
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.45 0.99 0.45
#> s(gini_index) 9.00 7.77 0.91 <2e-16 ***
#> s(gdp_per_capita) 9.00 8.90 1.01 0.84
#> s(year) 9.00 8.79 0.98 0.12
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_mpepr_gam_2,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_2
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By s(spei_12m)
+ te(gini_index, gdp_per_capita)
+ year
(Unordered year
)
In this model, the year
variable is treated as a unordered categorical variable.
mbepr_gam_3 |> summary()
#>
#> Family: Beta regression(22.961)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.13966291 0.01239618 -253.27660 < 2.22e-16 ***
#> year2009 0.18186241 0.01547344 11.75320 < 2.22e-16 ***
#> year2011 0.21938154 0.01552398 14.13179 < 2.22e-16 ***
#> year2012 0.12762808 0.01705013 7.48546 0.000000000000071296 ***
#> year2013 0.30045886 0.01577996 19.04053 < 2.22e-16 ***
#> year2014 0.36370319 0.01614550 22.52660 < 2.22e-16 ***
#> year2015 0.27363335 0.01733247 15.78733 < 2.22e-16 ***
#> year2016 0.35679536 0.01785538 19.98252 < 2.22e-16 ***
#> year2017 0.32472514 0.01741557 18.64568 < 2.22e-16 ***
#> year2018 0.31285212 0.01735407 18.02760 < 2.22e-16 ***
#> year2019 0.29884733 0.01787337 16.72026 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.057573 8.772137 110.2463 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.615306 19.579038 12492.7916 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0641 Deviance explained = 21.5%
#> -REML = -1.1513e+05 Scale est. = 1 n = 57487
Code
mbepr_gam_3
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0640502195 | weak | cohen1988 |
SE | 0.0018908170 | NA | NA |
Lower CI | 0.0603442864 | weak | cohen1988 |
Upper CI | 0.0677561526 | weak | cohen1988 |
Source: Created by the authors.
Code
mbepr_gam_3 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_gam_3
model.
Value | |
---|---|
df | 37.6728787269 |
logLik | 115245.8737829313 |
AIC | -230411.0452153889 |
BIC | -230049.5263615620 |
deviance | 58947.2335067492 |
df.residual | 57449.3271212731 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0640502195 |
npar | 44.0000000000 |
Source: Created by the authors.
Code
mbepr_gam_3 |>
summarise_coefs() |>
md_named_tibble()
mbepr_gam_3
model.
Value | |
---|---|
[Mean] | 0.0827001393 |
mean((Intercept)) | -3.1396629096 |
year2009 | 0.1818624080 |
year2011 | 0.2193815395 |
year2012 | 0.1276280825 |
year2013 | 0.3004588585 |
year2014 | 0.3637031921 |
year2015 | 0.2736333497 |
year2016 | 0.3567953622 |
year2017 | 0.3247251449 |
year2018 | 0.3128521178 |
year2019 | 0.2988473266 |
mean(s(spei_12m)) | -0.0277327029 |
mean(te(gini_index,gdp_per_capita)) | 0.1778406660 |
s(spei_12m).1 | -0.1245577622 |
s(spei_12m).2 | 0.1007030303 |
s(spei_12m).3 | -0.0065618914 |
s(spei_12m).4 | -0.0904930416 |
s(spei_12m).5 | -0.0587159465 |
s(spei_12m).6 | -0.0803111323 |
s(spei_12m).7 | 0.1049583770 |
s(spei_12m).8 | -0.2442363400 |
s(spei_12m).9 | 0.1496203801 |
te(gini_index,gdp_per_capita).1 | -1.6235389571 |
te(gini_index,gdp_per_capita).2 | -1.5849611880 |
te(gini_index,gdp_per_capita).3 | -1.7504688547 |
te(gini_index,gdp_per_capita).4 | -6.4502269169 |
te(gini_index,gdp_per_capita).5 | 0.5189268931 |
te(gini_index,gdp_per_capita).6 | -0.5309193349 |
te(gini_index,gdp_per_capita).7 | 0.2436565549 |
te(gini_index,gdp_per_capita).8 | -1.2611862251 |
te(gini_index,gdp_per_capita).9 | -1.4159681817 |
te(gini_index,gdp_per_capita).10 | 0.9065463916 |
te(gini_index,gdp_per_capita).11 | -0.2795128678 |
te(gini_index,gdp_per_capita).12 | 0.3834144047 |
te(gini_index,gdp_per_capita).13 | -0.6594141141 |
te(gini_index,gdp_per_capita).14 | 0.5565271611 |
te(gini_index,gdp_per_capita).15 | 1.2081220316 |
te(gini_index,gdp_per_capita).16 | -0.2420158209 |
te(gini_index,gdp_per_capita).17 | 0.4055542199 |
te(gini_index,gdp_per_capita).18 | -0.4264783740 |
te(gini_index,gdp_per_capita).19 | 2.6398495592 |
te(gini_index,gdp_per_capita).20 | 1.0676629014 |
te(gini_index,gdp_per_capita).21 | 0.9455273901 |
te(gini_index,gdp_per_capita).22 | 0.5197210405 |
te(gini_index,gdp_per_capita).23 | 0.0433864239 |
te(gini_index,gdp_per_capita).24 | 11.0539718470 |
Source: Created by the authors.
Code
mbepr_gam_3 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mbepr_gam_3
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | |
---|---|---|---|
worst | 0.9313201642 | 0.4945646420 | 0.2683005283 |
observed | 0.9313201642 | 0.3645397054 | 0.1174723892 |
estimate | 0.9313201642 | 0.3683641849 | 0.0059940691 |
Source: Created by the authors.
Code
mbepr_gam_3 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 10 iterations.
#> Gradient range [-0.000007959914122,0.00250617323]
#> (score -115134.7715 & scale 1).
#> Hessian positive definite, eigenvalue range [1.650377166,24840.47914].
#> Model rank = 44 / 44
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.06 1.01 0.85
#> te(gini_index,gdp_per_capita) 24.00 18.62 0.92 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_gam_3,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_3
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
beipr_gam_3 |> summary()
#>
#> Family: Beta regression(34.225)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.89967511 0.01020155 -284.23855 < 2.22e-16 ***
#> year2009 0.10539703 0.01272498 8.28269 < 2.22e-16 ***
#> year2011 0.11064449 0.01283770 8.61872 < 2.22e-16 ***
#> year2012 0.06673873 0.01412097 4.72621 0.0000022875 ***
#> year2013 0.19736129 0.01303079 15.14576 < 2.22e-16 ***
#> year2014 0.23665686 0.01336721 17.70429 < 2.22e-16 ***
#> year2015 0.27796489 0.01421029 19.56081 < 2.22e-16 ***
#> year2016 0.25929071 0.01478105 17.54211 < 2.22e-16 ***
#> year2017 0.29879275 0.01428656 20.91426 < 2.22e-16 ***
#> year2018 0.32434638 0.01417947 22.87437 < 2.22e-16 ***
#> year2019 0.30890547 0.01462771 21.11783 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.082345 8.78328 63.56623 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 19.054371 19.93088 14918.83941 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.149 Deviance explained = 23.6%
#> -REML = -1.1147e+05 Scale est. = 1 n = 57487
Code
beipr_gam_3
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.1493060969 | moderate | cohen1988 |
SE | 0.0026239087 | NA | NA |
Lower CI | 0.1441633303 | moderate | cohen1988 |
Upper CI | 0.1544488635 | moderate | cohen1988 |
Source: Created by the authors.
Code
beipr_gam_3 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
beipr_gam_3
model.
Value | |
---|---|
df | 38.1367164081 |
logLik | 111589.4704977399 |
AIC | -223098.1314710437 |
BIC | -222736.1325146194 |
deviance | 58668.8963346677 |
df.residual | 57448.8632835920 |
nobs | 57487.0000000000 |
adj.r.squared | 0.1493060969 |
npar | 44.0000000000 |
Source: Created by the authors.
Code
beipr_gam_3 |>
summarise_coefs() |>
md_named_tibble()
beipr_gam_3
model.
Value | |
---|---|
[Mean] | -0.0121664630 |
mean((Intercept)) | -2.8996751144 |
year2009 | 0.1053970265 |
year2011 | 0.1106444947 |
year2012 | 0.0667387259 |
year2013 | 0.1973612930 |
year2014 | 0.2366568590 |
year2015 | 0.2779648870 |
year2016 | 0.2592907062 |
year2017 | 0.2987927541 |
year2018 | 0.3243463811 |
year2019 | 0.3089054719 |
mean(s(spei_12m)) | -0.0751661941 |
mean(te(gini_index,gdp_per_capita)) | 0.0356144954 |
s(spei_12m).1 | -0.1104833431 |
s(spei_12m).2 | 0.2309113117 |
s(spei_12m).3 | -0.0740954490 |
s(spei_12m).4 | -0.1948874228 |
s(spei_12m).5 | -0.1245550452 |
s(spei_12m).6 | -0.1281435839 |
s(spei_12m).7 | 0.0659821733 |
s(spei_12m).8 | -0.5149726897 |
s(spei_12m).9 | 0.1737483018 |
te(gini_index,gdp_per_capita).1 | -1.3521563336 |
te(gini_index,gdp_per_capita).2 | -1.4496158938 |
te(gini_index,gdp_per_capita).3 | -1.6276597337 |
te(gini_index,gdp_per_capita).4 | 3.1934039794 |
te(gini_index,gdp_per_capita).5 | 0.5049433966 |
te(gini_index,gdp_per_capita).6 | -0.2957012023 |
te(gini_index,gdp_per_capita).7 | -0.0271573233 |
te(gini_index,gdp_per_capita).8 | -0.7439781133 |
te(gini_index,gdp_per_capita).9 | 1.0164995475 |
te(gini_index,gdp_per_capita).10 | 0.7853237886 |
te(gini_index,gdp_per_capita).11 | -0.0942365915 |
te(gini_index,gdp_per_capita).12 | 0.1628416906 |
te(gini_index,gdp_per_capita).13 | -0.3306452317 |
te(gini_index,gdp_per_capita).14 | 0.2367630613 |
te(gini_index,gdp_per_capita).15 | 1.1097339022 |
te(gini_index,gdp_per_capita).16 | 0.0226084764 |
te(gini_index,gdp_per_capita).17 | 0.2572753759 |
te(gini_index,gdp_per_capita).18 | -0.1434441278 |
te(gini_index,gdp_per_capita).19 | -0.4648194893 |
te(gini_index,gdp_per_capita).20 | 0.8009321008 |
te(gini_index,gdp_per_capita).21 | 1.1461040410 |
te(gini_index,gdp_per_capita).22 | 0.7535444622 |
te(gini_index,gdp_per_capita).23 | 0.4410344020 |
te(gini_index,gdp_per_capita).24 | -3.0468462957 |
Source: Created by the authors.
Code
beipr_gam_3 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
beipr_gam_3
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | |
---|---|---|---|
worst | 0.9313201642 | 0.4945646420 | 0.2683005283 |
observed | 0.9313201642 | 0.0351098096 | 0.1069496699 |
estimate | 0.9313201642 | 0.3683641849 | 0.0059940691 |
Source: Created by the authors.
Code
beipr_gam_3 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-0.0005117033844,0.004466838688]
#> (score -111471.2528 & scale 1).
#> Hessian positive definite, eigenvalue range [2.151867338,26994.38458].
#> Model rank = 44 / 44
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.08 0.99 0.51
#> te(gini_index,gdp_per_capita) 24.00 19.05 0.90 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = beipr_gam_3,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_3
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
mbepr_beipr_gam_3 |> summary()
#>
#> Family: Beta regression(21.151)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.159190247 0.009874687 -218.65910 < 2.22e-16 ***
#> year2009 0.122813449 0.012353708 9.94142 < 2.22e-16 ***
#> year2011 0.107219842 0.012442937 8.61692 < 2.22e-16 ***
#> year2012 0.045009885 0.013703519 3.28455 0.0010215 **
#> year2013 0.167603679 0.012673779 13.22444 < 2.22e-16 ***
#> year2014 0.215860977 0.012995929 16.60989 < 2.22e-16 ***
#> year2015 0.177928598 0.013903460 12.79743 < 2.22e-16 ***
#> year2016 0.199291395 0.014390675 13.84865 < 2.22e-16 ***
#> year2017 0.203573768 0.013972394 14.56971 < 2.22e-16 ***
#> year2018 0.207418677 0.013913274 14.90797 < 2.22e-16 ***
#> year2019 0.204303286 0.014329055 14.25797 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.08259 8.168693 35.5681 0.000018515 ***
#> te(gini_index,gdp_per_capita) 19.17344 20.000040 13789.6069 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.162 Deviance explained = 22%
#> -REML = -79087 Scale est. = 1 n = 57487
Code
mbepr_beipr_gam_3
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.1624932219 | moderate | cohen1988 |
SE | 0.0026948996 | NA | NA |
Lower CI | 0.1572113158 | moderate | cohen1988 |
Upper CI | 0.1677751280 | moderate | cohen1988 |
Source: Created by the authors.
Code
mbepr_beipr_gam_3 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_beipr_gam_3
model.
Value | |
---|---|
df | 37.2560329981 |
logLik | 79202.4210302577 |
AIC | -158324.5045936237 |
BIC | -157964.6202931100 |
deviance | 56959.3131546617 |
df.residual | 57449.7439670019 |
nobs | 57487.0000000000 |
adj.r.squared | 0.1624932219 |
npar | 44.0000000000 |
Source: Created by the authors.
Code
mbepr_beipr_gam_3 |>
summarise_coefs() |>
md_named_tibble()
mbepr_beipr_gam_3
model.
Value | |
---|---|
[Mean] | -0.0016887695 |
mean((Intercept)) | -2.1591902471 |
year2009 | 0.1228134492 |
year2011 | 0.1072198416 |
year2012 | 0.0450098846 |
year2013 | 0.1676036792 |
year2014 | 0.2158609769 |
year2015 | 0.1779285979 |
year2016 | 0.1992913950 |
year2017 | 0.2035737682 |
year2018 | 0.2074186770 |
year2019 | 0.2043032857 |
mean(s(spei_12m)) | -0.0318262562 |
mean(te(gini_index,gdp_per_capita)) | 0.0300123808 |
s(spei_12m).1 | -0.0603740738 |
s(spei_12m).2 | 0.1036650402 |
s(spei_12m).3 | -0.0253766695 |
s(spei_12m).4 | -0.0944020283 |
s(spei_12m).5 | -0.0497403537 |
s(spei_12m).6 | -0.0458236431 |
s(spei_12m).7 | 0.0423747806 |
s(spei_12m).8 | -0.2356056438 |
s(spei_12m).9 | 0.0788462854 |
te(gini_index,gdp_per_capita).1 | -1.2755043079 |
te(gini_index,gdp_per_capita).2 | -1.3317391053 |
te(gini_index,gdp_per_capita).3 | -1.5256843491 |
te(gini_index,gdp_per_capita).4 | 1.3212073962 |
te(gini_index,gdp_per_capita).5 | 0.4188514404 |
te(gini_index,gdp_per_capita).6 | -0.3133234669 |
te(gini_index,gdp_per_capita).7 | 0.0834345085 |
te(gini_index,gdp_per_capita).8 | -0.7898726306 |
te(gini_index,gdp_per_capita).9 | 0.3784693343 |
te(gini_index,gdp_per_capita).10 | 0.7132728392 |
te(gini_index,gdp_per_capita).11 | -0.1630904180 |
te(gini_index,gdp_per_capita).12 | 0.1769337451 |
te(gini_index,gdp_per_capita).13 | -0.4264444585 |
te(gini_index,gdp_per_capita).14 | 0.0878140020 |
te(gini_index,gdp_per_capita).15 | 1.1016613185 |
te(gini_index,gdp_per_capita).16 | -0.0537806577 |
te(gini_index,gdp_per_capita).17 | 0.2577611227 |
te(gini_index,gdp_per_capita).18 | -0.2288250830 |
te(gini_index,gdp_per_capita).19 | -0.0934906405 |
te(gini_index,gdp_per_capita).20 | 0.8395070875 |
te(gini_index,gdp_per_capita).21 | 1.1420810342 |
te(gini_index,gdp_per_capita).22 | 0.6995671093 |
te(gini_index,gdp_per_capita).23 | 0.3060160198 |
te(gini_index,gdp_per_capita).24 | -0.6045247004 |
Source: Created by the authors.
Code
Code
mbepr_beipr_gam_3 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mbepr_beipr_gam_3
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | |
---|---|---|---|
worst | 0.9313201642 | 0.4945646420 | 0.2683005283 |
observed | 0.9313201642 | 0.1877873097 | 0.1158616178 |
estimate | 0.9313201642 | 0.3683641849 | 0.0059940691 |
Source: Created by the authors.
Code
mbepr_beipr_gam_3 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [-0.002800550507,0.02961273496]
#> (score -79086.96817 & scale 1).
#> Hessian positive definite, eigenvalue range [1.427919491,28214.74375].
#> Model rank = 44 / 44
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 7.08 0.99 0.28
#> te(gini_index,gdp_per_capita) 24.00 19.17 0.90 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_beipr_gam_3,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_3
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
maper_gam_3 |> summary()
#>
#> Family: Beta regression(32.931)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.99601050 0.01364479 -292.85983 < 2.22e-16 ***
#> year2009 0.15247509 0.01725091 8.83867 < 2.22e-16 ***
#> year2011 0.23513923 0.01717695 13.68923 < 2.22e-16 ***
#> year2012 0.06449541 0.01880560 3.42959 0.0006045 ***
#> year2013 0.33439088 0.01737577 19.24466 < 2.22e-16 ***
#> year2014 0.33421523 0.01790162 18.66955 < 2.22e-16 ***
#> year2015 0.27987740 0.01907412 14.67315 < 2.22e-16 ***
#> year2016 0.33667530 0.01970282 17.08767 < 2.22e-16 ***
#> year2017 0.36461942 0.01913118 19.05891 < 2.22e-16 ***
#> year2018 0.21486146 0.01925547 11.15846 < 2.22e-16 ***
#> year2019 0.19476708 0.01982589 9.82387 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.533731 8.940516 458.3768 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.432039 19.324092 12523.8423 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0242 Deviance explained = 23.2%
#> -REML = -1.6815e+05 Scale est. = 1 n = 57487
Code
maper_gam_3
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0241775872 | weak | cohen1988 |
SE | 0.0012111945 | NA | NA |
Lower CI | 0.0218036896 | weak | cohen1988 |
Upper CI | 0.0265514849 | weak | cohen1988 |
Source: Created by the authors.
Code
maper_gam_3 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_gam_3
model.
Value | |
---|---|
df | 37.9657699917 |
logLik | 168265.6856390867 |
AIC | -336450.8420635338 |
BIC | -336090.0987988681 |
deviance | 60454.8015606333 |
df.residual | 57449.0342300083 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0241775872 |
npar | 44.0000000000 |
Source: Created by the authors.
Code
maper_gam_3 |>
summarise_coefs() |>
md_named_tibble()
maper_gam_3
model.
Value | |
---|---|
[Mean] | 0.1693848201 |
mean((Intercept)) | -3.9960105027 |
year2009 | 0.1524750945 |
year2011 | 0.2351392323 |
year2012 | 0.0644954114 |
year2013 | 0.3343908789 |
year2014 | 0.3342152341 |
year2015 | 0.2798774023 |
year2016 | 0.3366753017 |
year2017 | 0.3646194153 |
year2018 | 0.2148614609 |
year2019 | 0.1947670760 |
mean(s(spei_12m)) | -0.0569938870 |
mean(te(gini_index,gdp_per_capita)) | 0.3937654610 |
s(spei_12m).1 | -0.3061759381 |
s(spei_12m).2 | 0.1948473708 |
s(spei_12m).3 | -0.0575602287 |
s(spei_12m).4 | -0.1775842020 |
s(spei_12m).5 | -0.1584616024 |
s(spei_12m).6 | -0.1552613848 |
s(spei_12m).7 | 0.1691218646 |
s(spei_12m).8 | -0.4050855862 |
s(spei_12m).9 | 0.3832147242 |
te(gini_index,gdp_per_capita).1 | -1.4917441793 |
te(gini_index,gdp_per_capita).2 | -1.3551831038 |
te(gini_index,gdp_per_capita).3 | -1.4725345953 |
te(gini_index,gdp_per_capita).4 | -12.1354001211 |
te(gini_index,gdp_per_capita).5 | 0.9212847555 |
te(gini_index,gdp_per_capita).6 | -0.4251114623 |
te(gini_index,gdp_per_capita).7 | 0.1091643526 |
te(gini_index,gdp_per_capita).8 | -1.2978972559 |
te(gini_index,gdp_per_capita).9 | -2.5465670413 |
te(gini_index,gdp_per_capita).10 | 0.9595177592 |
te(gini_index,gdp_per_capita).11 | -0.1391346748 |
te(gini_index,gdp_per_capita).12 | 0.3635963590 |
te(gini_index,gdp_per_capita).13 | -0.6399226520 |
te(gini_index,gdp_per_capita).14 | 1.1461395221 |
te(gini_index,gdp_per_capita).15 | 1.1395827679 |
te(gini_index,gdp_per_capita).16 | -0.0927790639 |
te(gini_index,gdp_per_capita).17 | 0.4325713514 |
te(gini_index,gdp_per_capita).18 | -0.3692779823 |
te(gini_index,gdp_per_capita).19 | 5.0310873861 |
te(gini_index,gdp_per_capita).20 | 0.5497008795 |
te(gini_index,gdp_per_capita).21 | 0.2523489435 |
te(gini_index,gdp_per_capita).22 | 0.0407022538 |
te(gini_index,gdp_per_capita).23 | -0.3371453468 |
te(gini_index,gdp_per_capita).24 | 20.8073722109 |
Source: Created by the authors.
Code
maper_gam_3 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
maper_gam_3
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | |
---|---|---|---|
worst | 0.9313201642 | 0.4945646420 | 0.2683005283 |
observed | 0.9313201642 | 0.4381816939 | 0.1325871299 |
estimate | 0.9313201642 | 0.3683641849 | 0.0059940691 |
Source: Created by the authors.
Code
maper_gam_3 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 9 iterations.
#> Gradient range [-0.00000001675275563,0.00007806112087]
#> (score -168153.2931 & scale 1).
#> Hessian positive definite, eigenvalue range [1.94821447,20960.98539].
#> Model rank = 44 / 44
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.53 1.02 0.92
#> te(gini_index,gdp_per_capita) 24.00 18.43 0.93 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_gam_3,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER"
)
maper_gam_3
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
mpepr_gam_3 |> summary()
#>
#> Family: Beta regression(41.403)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.86150556 0.01260182 -306.42433 < 2.22e-16 ***
#> year2009 0.14371061 0.01586007 9.06116 < 2.22e-16 ***
#> year2011 0.25115553 0.01577156 15.92459 < 2.22e-16 ***
#> year2012 0.10922752 0.01721641 6.34439 0.00000000022332 ***
#> year2013 0.28761937 0.01603130 17.94111 < 2.22e-16 ***
#> year2014 0.27297624 0.01655091 16.49313 < 2.22e-16 ***
#> year2015 0.30586205 0.01750606 17.47178 < 2.22e-16 ***
#> year2016 0.34492876 0.01807755 19.08050 < 2.22e-16 ***
#> year2017 0.42902585 0.01745024 24.58567 < 2.22e-16 ***
#> year2018 0.33283963 0.01753872 18.97742 < 2.22e-16 ***
#> year2019 0.27380899 0.01811765 15.11283 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.42186 8.909772 585.5615 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.91214 19.674028 12819.2198 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.00959 Deviance explained = 24.2%
#> -REML = -1.5535e+05 Scale est. = 1 n = 57487
Code
mpepr_gam_3
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0095858206 | very weak (negligible) | cohen1988 |
SE | 0.0007740484 | NA | NA |
Lower CI | 0.0080687136 | very weak (negligible) | cohen1988 |
Upper CI | 0.0111029276 | very weak (negligible) | cohen1988 |
Source: Created by the authors.
Code
mpepr_gam_3 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mpepr_gam_3
model.
Value | |
---|---|
df | 38.3339984777 |
logLik | 155467.7738954670 |
AIC | -310854.3801911687 |
BIC | -310490.7771800697 |
deviance | 61150.4305363797 |
df.residual | 57448.6660015223 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0095858206 |
npar | 44.0000000000 |
Source: Created by the authors.
Code
mpepr_gam_3 |>
summarise_coefs() |>
md_named_tibble()
mpepr_gam_3
model.
Value | |
---|---|
[Mean] | 0.1306026090 |
mean((Intercept)) | -3.8615055590 |
year2009 | 0.1437106128 |
year2011 | 0.2511555289 |
year2012 | 0.1092275225 |
year2013 | 0.2876193680 |
year2014 | 0.2729762389 |
year2015 | 0.3058620458 |
year2016 | 0.3449287553 |
year2017 | 0.4290258493 |
year2018 | 0.3328396293 |
year2019 | 0.2738089862 |
mean(s(spei_12m)) | -0.0361386690 |
mean(te(gini_index,gdp_per_capita)) | 0.2992547433 |
s(spei_12m).1 | -0.2444282876 |
s(spei_12m).2 | 0.1058702031 |
s(spei_12m).3 | -0.0327454758 |
s(spei_12m).4 | -0.1219319935 |
s(spei_12m).5 | -0.1300972110 |
s(spei_12m).6 | -0.0941197011 |
s(spei_12m).7 | 0.1191623395 |
s(spei_12m).8 | -0.2159552192 |
s(spei_12m).9 | 0.2889973246 |
te(gini_index,gdp_per_capita).1 | -2.0960278090 |
te(gini_index,gdp_per_capita).2 | -1.6243647805 |
te(gini_index,gdp_per_capita).3 | -1.6713527887 |
te(gini_index,gdp_per_capita).4 | -9.1012143419 |
te(gini_index,gdp_per_capita).5 | 0.9746756794 |
te(gini_index,gdp_per_capita).6 | -0.6786623722 |
te(gini_index,gdp_per_capita).7 | 0.4992745525 |
te(gini_index,gdp_per_capita).8 | -1.8208678695 |
te(gini_index,gdp_per_capita).9 | -1.6793720102 |
te(gini_index,gdp_per_capita).10 | 1.0341850370 |
te(gini_index,gdp_per_capita).11 | -0.4676619299 |
te(gini_index,gdp_per_capita).12 | 0.6393627706 |
te(gini_index,gdp_per_capita).13 | -0.9608980325 |
te(gini_index,gdp_per_capita).14 | 1.1880938729 |
te(gini_index,gdp_per_capita).15 | 1.0832396225 |
te(gini_index,gdp_per_capita).16 | -0.5198117726 |
te(gini_index,gdp_per_capita).17 | 0.5725301377 |
te(gini_index,gdp_per_capita).18 | -0.7094583902 |
te(gini_index,gdp_per_capita).19 | 4.3493500522 |
te(gini_index,gdp_per_capita).20 | 0.2656541669 |
te(gini_index,gdp_per_capita).21 | 0.1224110748 |
te(gini_index,gdp_per_capita).22 | 0.1781379545 |
te(gini_index,gdp_per_capita).23 | -0.0371749324 |
te(gini_index,gdp_per_capita).24 | 17.6420659475 |
Source: Created by the authors.
Code
mpepr_gam_3 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mpepr_gam_3
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | |
---|---|---|---|
worst | 0.9313201642 | 0.4945646420 | 0.2683005283 |
observed | 0.9313201642 | 0.4495280531 | 0.1284622680 |
estimate | 0.9313201642 | 0.3683641849 | 0.0059940691 |
Source: Created by the authors.
Code
mpepr_gam_3 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-0.000000003203455279,0.00004511554999]
#> (score -155349.7207 & scale 1).
#> Hessian positive definite, eigenvalue range [2.26230441,23477.26635].
#> Model rank = 44 / 44
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.42 0.96 0.01 **
#> te(gini_index,gdp_per_capita) 24.00 18.91 0.93 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mpepr_gam_3,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_3
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
maper_mpepr_gam_3 |> summary()
#>
#> Family: Beta regression(27.303)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.12926296 0.01186277 -263.78846 < 2.22e-16 ***
#> year2009 0.13680174 0.01488768 9.18892 < 2.22e-16 ***
#> year2011 0.19340145 0.01488600 12.99217 < 2.22e-16 ***
#> year2012 0.06472745 0.01628265 3.97524 0.000070308 ***
#> year2013 0.24249341 0.01511562 16.04257 < 2.22e-16 ***
#> year2014 0.22739170 0.01560549 14.57127 < 2.22e-16 ***
#> year2015 0.20955550 0.01661983 12.60876 < 2.22e-16 ***
#> year2016 0.26288578 0.01714486 15.33321 < 2.22e-16 ***
#> year2017 0.32754455 0.01656538 19.77284 < 2.22e-16 ***
#> year2018 0.17677427 0.01673454 10.56343 < 2.22e-16 ***
#> year2019 0.14848298 0.01724484 8.61028 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.526907 8.938769 559.0332 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.841553 19.610152 12241.3142 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0589 Deviance explained = 23.6%
#> -REML = -1.1925e+05 Scale est. = 1 n = 57487
Code
maper_mpepr_gam_3
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0589259436 | weak | cohen1988 |
SE | 0.0018235333 | NA | NA |
Lower CI | 0.0553518839 | weak | cohen1988 |
Upper CI | 0.0625000032 | weak | cohen1988 |
Source: Created by the authors.
Code
maper_mpepr_gam_3 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_mpepr_gam_3
model.
Value | |
---|---|
df | 38.3684603510 |
logLik | 119371.6301494287 |
AIC | -238662.1624567214 |
BIC | -238298.8719358787 |
deviance | 59347.9113152593 |
df.residual | 57448.6315396490 |
nobs | 57487.0000000000 |
adj.r.squared | 0.0589259436 |
npar | 44.0000000000 |
Source: Created by the authors.
Code
maper_mpepr_gam_3 |>
summarise_coefs() |>
md_named_tibble()
maper_mpepr_gam_3
model.
Value | |
---|---|
[Mean] | 0.1404606223 |
mean((Intercept)) | -3.1292629574 |
year2009 | 0.1368017439 |
year2011 | 0.1934014494 |
year2012 | 0.0647274507 |
year2013 | 0.2424934106 |
year2014 | 0.2273917044 |
year2015 | 0.2095554984 |
year2016 | 0.2628857750 |
year2017 | 0.3275445525 |
year2018 | 0.1767742657 |
year2019 | 0.1484829769 |
mean(s(spei_12m)) | -0.0050026515 |
mean(te(gini_index,gdp_per_capita)) | 0.3068539739 |
s(spei_12m).1 | -0.2263180417 |
s(spei_12m).2 | 0.0238303442 |
s(spei_12m).3 | -0.0089613031 |
s(spei_12m).4 | -0.0718597325 |
s(spei_12m).5 | -0.0858019057 |
s(spei_12m).6 | -0.0466087591 |
s(spei_12m).7 | 0.1311737971 |
s(spei_12m).8 | -0.0433872575 |
s(spei_12m).9 | 0.2829089951 |
te(gini_index,gdp_per_capita).1 | -1.8335236249 |
te(gini_index,gdp_per_capita).2 | -1.5862695654 |
te(gini_index,gdp_per_capita).3 | -1.6837156974 |
te(gini_index,gdp_per_capita).4 | -9.0555687573 |
te(gini_index,gdp_per_capita).5 | 0.9875648349 |
te(gini_index,gdp_per_capita).6 | -0.4657955176 |
te(gini_index,gdp_per_capita).7 | 0.3205507634 |
te(gini_index,gdp_per_capita).8 | -1.4192503472 |
te(gini_index,gdp_per_capita).9 | -1.7614710998 |
te(gini_index,gdp_per_capita).10 | 0.9006326264 |
te(gini_index,gdp_per_capita).11 | -0.2887408343 |
te(gini_index,gdp_per_capita).12 | 0.4732375702 |
te(gini_index,gdp_per_capita).13 | -0.7364740672 |
te(gini_index,gdp_per_capita).14 | 1.0455874853 |
te(gini_index,gdp_per_capita).15 | 1.0082331190 |
te(gini_index,gdp_per_capita).16 | -0.3078790623 |
te(gini_index,gdp_per_capita).17 | 0.4474006871 |
te(gini_index,gdp_per_capita).18 | -0.5220166509 |
te(gini_index,gdp_per_capita).19 | 4.1520005645 |
te(gini_index,gdp_per_capita).20 | 0.2112077211 |
te(gini_index,gdp_per_capita).21 | 0.1366376155 |
te(gini_index,gdp_per_capita).22 | 0.1878664862 |
te(gini_index,gdp_per_capita).23 | -0.0532865134 |
te(gini_index,gdp_per_capita).24 | 17.2075676377 |
Source: Created by the authors.
Code
Code
maper_mpepr_gam_3 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
maper_mpepr_gam_3
model terms.
para | s(spei_12m) | te(gini_index,gdp_per_capita) | |
---|---|---|---|
worst | 0.9313201642 | 0.4945646420 | 0.2683005283 |
observed | 0.9313201642 | 0.4406469634 | 0.1330597970 |
estimate | 0.9313201642 | 0.3683641849 | 0.0059940691 |
Source: Created by the authors.
Code
maper_mpepr_gam_3 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-0.00002049381068,0.02468780247]
#> (score -119252.4915 & scale 1).
#> Hessian positive definite, eigenvalue range [2.107721844,25232.74469].
#> Model rank = 44 / 44
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(spei_12m) 9.00 8.53 0.98 0.24
#> te(gini_index,gdp_per_capita) 24.00 18.84 0.92 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_mpepr_gam_3,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_3
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By s(year)
(Continuous)
Code
mbepr_gam_4 <- mgcv::gam(
mbepr ~ s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mbepr_gam_4 |> summary()
#>
#> Family: Beta regression(17.632)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.819223463 0.003244516 -868.9196 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.517735 8.935257 302.3165 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00359 Deviance explained = 0.499%
#> -REML = -1.1796e+05 Scale est. = 1 n = 62762
Code
mbepr_gam_4 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
mbepr_gam_4
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
mbepr_gam_4 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_gam_4
model.
Value | |
---|---|
df | 9.5177348799 |
logLik | 117986.4920079141 |
AIC | -235951.1135022862 |
BIC | -235852.1810852699 |
deviance | 64482.0026382929 |
df.residual | 62752.4822651201 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0035886584 |
npar | 10.0000000000 |
Source: Created by the authors.
Code
mbepr_gam_4 |>
summarise_coefs() |>
md_named_tibble()
mbepr_gam_4
model.
Value | |
---|---|
[Mean] | -0.2591799301 |
mean((Intercept)) | -2.8192234633 |
mean(s(year)) | 0.0252693513 |
s(year).1 | -0.0616929526 |
s(year).2 | -0.4716576788 |
s(year).3 | 0.1111416481 |
s(year).4 | -0.3755761928 |
s(year).5 | 0.0081485117 |
s(year).6 | -0.1063744614 |
s(year).7 | 0.0620259186 |
s(year).8 | 0.7073784597 |
s(year).9 | 0.3540309094 |
Source: Created by the authors.
Code
mbepr_gam_4 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mbepr_gam_4
model terms.
para | s(year) | |
---|---|---|
worst | 0 | 0 |
observed | 0 | 0 |
estimate | 0 | 0 |
Source: Created by the authors.
Code
mbepr_gam_4 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-0.0000007308610019,0.03364194555]
#> (score -117956.7533 & scale 1).
#> Hessian positive definite, eigenvalue range [3.531791006,26569.1772].
#> Model rank = 10 / 10
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(year) 9.00 8.52 1 0.69
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_gam_4,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_4
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
beipr_gam_4 <- mgcv::gam(
beipr ~ s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
beipr_gam_4 |> summary()
#>
#> Family: Beta regression(25.787)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.648641361 0.002748208 -963.7703 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.380103 8.894804 281.1438 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00755 Deviance explained = 0.486%
#> -REML = -1.1332e+05 Scale est. = 1 n = 62762
Code
beipr_gam_4 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
beipr_gam_4
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
beipr_gam_4 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
beipr_gam_4
model.
Value | |
---|---|
df | 9.3801031575 |
logLik | 113351.7302965717 |
AIC | -226681.8554885659 |
BIC | -226584.1236629445 |
deviance | 63829.0813461868 |
df.residual | 62752.6198968425 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0075487984 |
npar | 10.0000000000 |
Source: Created by the authors.
Code
beipr_gam_4 |>
summarise_coefs() |>
md_named_tibble()
beipr_gam_4
model.
Value | |
---|---|
[Mean] | -0.2736261600 |
mean((Intercept)) | -2.6486413607 |
mean(s(year)) | -0.0097355821 |
s(year).1 | 0.0561664109 |
s(year).2 | -0.4328040766 |
s(year).3 | 0.0674106088 |
s(year).4 | -0.3427380909 |
s(year).5 | -0.0754938762 |
s(year).6 | -0.1521644547 |
s(year).7 | 0.0933523603 |
s(year).8 | 0.5979252308 |
s(year).9 | 0.1007256485 |
Source: Created by the authors.
Code
beipr_gam_4 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
beipr_gam_4
model terms.
para | s(year) | |
---|---|---|
worst | 0 | 0 |
observed | 0 | 0 |
estimate | 0 | 0 |
Source: Created by the authors.
Code
beipr_gam_4 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [-0.0000000004378528651,0.00001056270043]
#> (score -113322.8181 & scale 1).
#> Hessian positive definite, eigenvalue range [3.395724488,29159.85227].
#> Model rank = 10 / 10
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(year) 9.00 8.38 1.01 0.85
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = beipr_gam_4,
type = 4,
x_label = "Years",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_4
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mbepr_beipr_gam_4 <- mgcv::gam(
mbepr_beipr ~ s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mbepr_beipr_gam_4 |> summary()
#>
#> Family: Beta regression(16.293)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.96506495 0.00268522 -731.8079 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.44098 8.913794 235.0998 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0045 Deviance explained = 0.392%
#> -REML = -78452 Scale est. = 1 n = 62762
Code
mbepr_beipr_gam_4 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
mbepr_beipr_gam_4
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0045000402 | very weak (negligible) | cohen1988 |
SE | 0.0005330977 | NA | NA |
Lower CI | 0.0034551879 | very weak (negligible) | cohen1988 |
Upper CI | 0.0055448926 | very weak (negligible) | cohen1988 |
Source: Created by the authors.
Code
mbepr_beipr_gam_4 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_beipr_gam_4
model.
Value | |
---|---|
df | 9.4409801854 |
logLik | 78481.3360960384 |
AIC | -156941.1983968910 |
BIC | -156844.0605562020 |
deviance | 61788.3616920760 |
df.residual | 62752.5590198146 |
nobs | 62762.0000000000 |
adj.r.squared | 0.0045000402 |
npar | 10.0000000000 |
Source: Created by the authors.
Code
mbepr_beipr_gam_4 |>
summarise_coefs() |>
md_named_tibble()
mbepr_beipr_gam_4
model.
Value | |
---|---|
[Mean] | -0.1919132142 |
mean((Intercept)) | -1.9650649515 |
mean(s(year)) | 0.0051036454 |
s(year).1 | -0.0208363314 |
s(year).2 | -0.3588470884 |
s(year).3 | 0.0933378059 |
s(year).4 | -0.3193991152 |
s(year).5 | -0.0265977789 |
s(year).6 | -0.0976915928 |
s(year).7 | 0.0469086650 |
s(year).8 | 0.5229279235 |
s(year).9 | 0.2061303213 |
Source: Created by the authors.
Code
Code
mbepr_beipr_gam_4 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mbepr_beipr_gam_4
model terms.
para | s(year) | |
---|---|---|
worst | 0 | 0 |
observed | 0 | 0 |
estimate | 0 | 0 |
Source: Created by the authors.
Code
mbepr_beipr_gam_4 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 4 iterations.
#> Gradient range [0.0001485521986,0.01425683628]
#> (score -78451.89082 & scale 1).
#> Hessian positive definite, eigenvalue range [3.542988508,30825.81986].
#> Model rank = 10 / 10
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(year) 9.00 8.44 0.98 0.09 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_beipr_gam_4,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_4
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_gam_4 <- mgcv::gam(
maper ~ s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
maper_gam_4 |> summary()
#>
#> Family: Beta regression(24.478)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.670795216 0.003547555 -1034.739 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.587611 8.952185 318.7632 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00151 Deviance explained = 0.488%
#> -REML = -1.7521e+05 Scale est. = 1 n = 62762
Code
maper_gam_4 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
maper_gam_4
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
maper_gam_4 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_gam_4
model.
Value | |
---|---|
df | 9.5876109295 |
logLik | 175244.4552867728 |
AIC | -350467.0062043938 |
BIC | -350367.9206397486 |
deviance | 67164.5053157659 |
df.residual | 62752.4123890705 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0015113762 |
npar | 10.0000000000 |
Source: Created by the authors.
Code
maper_gam_4 |>
summarise_coefs() |>
md_named_tibble()
maper_gam_4
model.
Value | |
---|---|
[Mean] | -0.3262673232 |
mean((Intercept)) | -3.6707952155 |
mean(s(year)) | 0.0453468870 |
s(year).1 | 0.0389410631 |
s(year).2 | -0.1895386771 |
s(year).3 | 0.0670338162 |
s(year).4 | -0.0993975060 |
s(year).5 | 0.0862343325 |
s(year).6 | 0.1424197328 |
s(year).7 | -0.0112784840 |
s(year).8 | 0.2021700530 |
s(year).9 | 0.1715376528 |
Source: Created by the authors.
Code
maper_gam_4 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
maper_gam_4
model terms.
para | s(year) | |
---|---|---|
worst | 0 | 0 |
observed | 0 | 0 |
estimate | 0 | 0 |
Source: Created by the authors.
Code
maper_gam_4 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [-0.000001789168296,0.1457289897]
#> (score -175214.1738 & scale 1).
#> Hessian positive definite, eigenvalue range [3.266969182,21653.71035].
#> Model rank = 10 / 10
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(year) 9.00 8.59 0.99 0.28
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_gam_4,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MAPER"
)
maper_gam_4
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mpepr_gam_4 <- mgcv::gam(
mpepr ~ s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mpepr_gam_4 |> summary()
#>
#> Family: Beta regression(30.596)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.530426653 0.003291301 -1072.654 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.125824 8.797382 452.6992 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0126 Deviance explained = 0.688%
#> -REML = -1.6103e+05 Scale est. = 1 n = 62762
Code
mpepr_gam_4 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
mpepr_gam_4
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
mpepr_gam_4 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mpepr_gam_4
model.
Value | |
---|---|
df | 9.125823871 |
logLik | 161057.642508866 |
AIC | -322093.690254409 |
BIC | -321996.005207994 |
deviance | 67280.102592947 |
df.residual | 62752.874176129 |
nobs | 62762.000000000 |
adj.r.squared | -0.012590109 |
npar | 10.000000000 |
Source: Created by the authors.
Code
mpepr_gam_4 |>
summarise_coefs() |>
md_named_tibble()
mpepr_gam_4
model.
Value | |
---|---|
[Mean] | -0.3632127806 |
mean((Intercept)) | -3.5304266535 |
mean(s(year)) | -0.0113001281 |
s(year).1 | 0.1018320400 |
s(year).2 | -0.5486815309 |
s(year).3 | -0.0575378013 |
s(year).4 | -0.1922950329 |
s(year).5 | -0.0030350331 |
s(year).6 | -0.0968978698 |
s(year).7 | 0.0561403469 |
s(year).8 | 0.5864875915 |
s(year).9 | 0.0522861365 |
Source: Created by the authors.
Code
mpepr_gam_4 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
mpepr_gam_4
model terms.
para | s(year) | |
---|---|---|
worst | 0 | 0 |
observed | 0 | 0 |
estimate | 0 | 0 |
Source: Created by the authors.
Code
mpepr_gam_4 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [0.0000409648117,0.009724409113]
#> (score -161030.7811 & scale 1).
#> Hessian positive definite, eigenvalue range [3.051833023,24661.20026].
#> Model rank = 10 / 10
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(year) 9.00 8.13 1.01 0.79
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mpepr_gam_4,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_4
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_mpepr_gam_4 <- mgcv::gam(
maper_mpepr ~ s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
maper_mpepr_gam_4 |> summary()
#>
#> Family: Beta regression(20.399)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.877019036 0.003155272 -911.8133 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.577875 8.950003 332.6079 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.000687 Deviance explained = 0.525%
#> -REML = -1.2164e+05 Scale est. = 1 n = 62762
Code
maper_mpepr_gam_4 |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
) |>
md_named_tibble()
maper_mpepr_gam_4
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
maper_mpepr_gam_4 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_mpepr_gam_4
model.
Value | |
---|---|
df | 9.5778747519 |
logLik | 121672.7902501706 |
AIC | -243323.6804947727 |
BIC | -243224.6146690252 |
deviance | 64882.8996527854 |
df.residual | 62752.4221252481 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0006872297 |
npar | 10.0000000000 |
Source: Created by the authors.
Code
maper_mpepr_gam_4 |>
summarise_coefs() |>
md_named_tibble()
maper_mpepr_gam_4
model.
Value | |
---|---|
[Mean] | -0.2723942217 |
mean((Intercept)) | -2.8770190360 |
mean(s(year)) | 0.0170085354 |
s(year).1 | 0.0497055757 |
s(year).2 | -0.3923181621 |
s(year).3 | -0.0094910536 |
s(year).4 | -0.1372109144 |
s(year).5 | 0.0730709950 |
s(year).6 | 0.0302598366 |
s(year).7 | 0.0024651166 |
s(year).8 | 0.3945578698 |
s(year).9 | 0.1420375555 |
Source: Created by the authors.
Code
Code
maper_mpepr_gam_4 |>
mgcv::concurvity(TRUE) |>
as.data.frame() |>
pal::pipe_table(label = NA, digits = 10) |>
pal::cat_lines()
maper_mpepr_gam_4
model terms.
para | s(year) | |
---|---|---|
worst | 0 | 0 |
observed | 0 | 0 |
estimate | 0 | 0 |
Source: Created by the authors.
Code
maper_mpepr_gam_4 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 6 iterations.
#> Gradient range [0.001452357338,0.001462095772]
#> (score -121642.3846 & scale 1).
#> Hessian positive definite, eigenvalue range [3.300163003,26958.96005].
#> Model rank = 10 / 10
#>
#> Basis dimension (k) checking results. Low p-value (k-index<1) may
#> indicate that k is too low, especially if edf is close to k'.
#>
#> k' edf k-index p-value
#> s(year) 9.00 8.58 0.99 0.36
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_mpepr_gam_4,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_4
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By year
(Ordered)
In this model, the year
variable is treated as a ordered categorical variable.
.L
, .Q
, and .C
are, respectively, the coefficients for the ordered factor coded with linear, quadratic, and cubic contrasts.
mbepr_gam_5 |> summary()
#>
#> Family: Beta regression(17.638)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.819724761 0.003245311 -868.86131 < 2.22e-16 ***
#> year.L 0.039878128 0.011320870 3.52253 0.00042745 ***
#> year.Q -0.106048138 0.011379691 -9.31907 < 2.22e-16 ***
#> year.C 0.004592172 0.011329411 0.40533 0.68523353
#> year^4 -0.084506343 0.011264853 -7.50177 0.000000000000062962 ***
#> year^5 0.115842989 0.011244823 10.30190 < 2.22e-16 ***
#> year^6 -0.049357350 0.011184889 -4.41286 0.000010201391317061 ***
#> year^7 -0.009601510 0.011183504 -0.85854 0.39059315
#> year^8 0.052923709 0.011165129 4.74009 0.000002136239494897 ***
#> year^9 -0.019333845 0.011154098 -1.73334 0.08303524 .
#> year^10 -0.058854569 0.011214557 -5.24805 0.000000153716732986 ***
#> year^11 -0.017281456 0.011218670 -1.54042 0.12345819
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00327 Deviance explained = 0.525%
#> -REML = -1.1795e+05 Scale est. = 1 n = 62762
Code
mbepr_gam_5 |>
summarise_r2(
data |>
nrow()
) |>
md_named_tibble()
mbepr_gam_5
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
mbepr_gam_5 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_gam_5
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 117994.6877479883 |
AIC | -235963.3754959765 |
BIC | -235845.7631300175 |
deviance | 64485.5210188838 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0032733397 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
mbepr_gam_5 |>
summarise_coefs() |>
md_named_tibble()
mbepr_gam_5
model.
Value | |
---|---|
[Mean] | -0.2459559144 |
mean((Intercept)) | -2.8197247609 |
year.L | 0.0398781283 |
year.Q | -0.1060481384 |
year.C | 0.0045921722 |
year^4 | -0.0845063430 |
year^5 | 0.1158429895 |
year^6 | -0.0493573500 |
year^7 | -0.0096015103 |
year^8 | 0.0529237091 |
year^9 | -0.0193338448 |
year^10 | -0.0588545690 |
year^11 | -0.0172814558 |
Source: Created by the authors.
Code
mbepr_gam_5 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [0.000001198946155,0.000001198946155]
#> (score -117950.6115 & scale 1).
#> Hessian positive definite, eigenvalue range [26571.0456,26571.0456].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_gam_5,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_5
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
beipr_gam_5 |> summary()
#>
#> Family: Beta regression(25.798)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.649018998 0.002748798 -963.70086 < 2.22e-16 ***
#> year.L 0.089565087 0.009525353 9.40281 < 2.22e-16 ***
#> year.Q 0.008970089 0.009602439 0.93415 0.3502281
#> year.C -0.026710792 0.009568146 -2.79164 0.0052442 **
#> year^4 -0.070578182 0.009512419 -7.41958 0.00000000000011749 ***
#> year^5 0.082998344 0.009501906 8.73492 < 2.22e-16 ***
#> year^6 -0.043857480 0.009483389 -4.62466 0.00000375207630563 ***
#> year^7 -0.043134260 0.009459485 -4.55990 0.00000511791590338 ***
#> year^8 0.048173854 0.009463350 5.09057 0.00000035698739739 ***
#> year^9 0.004749118 0.009500885 0.49986 0.6171732
#> year^10 -0.003885200 0.009548341 -0.40690 0.6840830
#> year^11 0.047418864 0.009576401 4.95164 0.00000073591609239 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00784 Deviance explained = 0.52%
#> -REML = -1.1332e+05 Scale est. = 1 n = 62762
Code
beipr_gam_5 |>
summarise_r2(
data |>
nrow()
) |>
md_named_tibble()
beipr_gam_5
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
beipr_gam_5 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
beipr_gam_5
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 113362.5968849334 |
AIC | -226699.1937698668 |
BIC | -226581.5814039078 |
deviance | 63831.4178238831 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0078397415 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
beipr_gam_5 |>
summarise_coefs() |>
md_named_tibble()
beipr_gam_5
model.
Value | |
---|---|
[Mean] | -0.2129424629 |
mean((Intercept)) | -2.6490189976 |
year.L | 0.0895650875 |
year.Q | 0.0089700894 |
year.C | -0.0267107916 |
year^4 | -0.0705781816 |
year^5 | 0.0829983439 |
year^6 | -0.0438574801 |
year^7 | -0.0431342600 |
year^8 | 0.0481738541 |
year^9 | 0.0047491179 |
year^10 | -0.0038852003 |
year^11 | 0.0474188640 |
Source: Created by the authors.
Code
beipr_gam_5 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [0.00000875780144,0.00000875780144]
#> (score -113316.5276 & scale 1).
#> Hessian positive definite, eigenvalue range [29161.5517,29161.5517].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = beipr_gam_5,
type = 5,
x_label = "Years",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_5
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
mbepr_beipr_gam_5 |> summary()
#>
#> Family: Beta regression(16.296)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.965102548 0.002685499 -731.74585 < 2.22e-16 ***
#> year.L -0.047271406 0.009320041 -5.07202 0.00000039362084 ***
#> year.Q -0.013637154 0.009377919 -1.45418 0.14589726
#> year.C -0.007039030 0.009352037 -0.75267 0.45164616
#> year^4 -0.058196732 0.009300741 -6.25721 0.00000000039191 ***
#> year^5 0.093573558 0.009290835 10.07160 < 2.22e-16 ***
#> year^6 -0.052789757 0.009257180 -5.70257 0.00000001180112 ***
#> year^7 -0.020548391 0.009258158 -2.21949 0.02645340 *
#> year^8 0.046041585 0.009257142 4.97363 0.00000065711276 ***
#> year^9 0.005464968 0.009268416 0.58963 0.55543643
#> year^10 -0.035902530 0.009320676 -3.85192 0.00011719 ***
#> year^11 0.012717049 0.009327199 1.36344 0.17274482
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.00446 Deviance explained = 0.406%
#> -REML = -78439 Scale est. = 1 n = 62762
Code
mbepr_beipr_gam_5 |>
summarise_r2(
data |>
nrow()
) |>
md_named_tibble()
mbepr_beipr_gam_5
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0044644574 | very weak (negligible) | cohen1988 |
SE | 0.0005310049 | NA | NA |
Lower CI | 0.0034237070 | very weak (negligible) | cohen1988 |
Upper CI | 0.0055052078 | very weak (negligible) | cohen1988 |
Source: Created by the authors.
Code
mbepr_beipr_gam_5 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_beipr_gam_5
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 78485.5946634256 |
AIC | -156945.1893268511 |
BIC | -156827.5769608921 |
deviance | 61789.7893367158 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | 0.0044644574 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
mbepr_beipr_gam_5 |>
summarise_coefs() |>
md_named_tibble()
mbepr_beipr_gam_5
model.
Value | |
---|---|
[Mean] | -0.1702241990 |
mean((Intercept)) | -1.9651025476 |
year.L | -0.0472714062 |
year.Q | -0.0136371535 |
year.C | -0.0070390298 |
year^4 | -0.0581967323 |
year^5 | 0.0935735582 |
year^6 | -0.0527897574 |
year^7 | -0.0205483915 |
year^8 | 0.0460415848 |
year^9 | 0.0054649678 |
year^10 | -0.0359025295 |
year^11 | 0.0127170490 |
Source: Created by the authors.
Code
mbepr_beipr_gam_5 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [0.01219855648,0.01219855648]
#> (score -78439.24791 & scale 1).
#> Hessian positive definite, eigenvalue range [30826.9659,30826.9659].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_beipr_gam_5,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_5
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
maper_gam_5 |> summary()
#>
#> Family: Beta regression(24.482)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.671007620 0.003548104 -1034.63917 < 2.22e-16 ***
#> year.L 0.027842144 0.012368692 2.25102 0.0243844 *
#> year.Q -0.134341841 0.012419112 -10.81735 < 2.22e-16 ***
#> year.C -0.082483360 0.012340935 -6.68372 0.000000000023295072 ***
#> year^4 -0.080548801 0.012313726 -6.54138 0.000000000060952495 ***
#> year^5 0.079273119 0.012318076 6.43551 0.000000000123058147 ***
#> year^6 0.024429920 0.012282057 1.98907 0.0466930 *
#> year^7 0.035558528 0.012236630 2.90591 0.0036619 **
#> year^8 0.092660310 0.012200680 7.59468 0.000000000000030854 ***
#> year^9 -0.006557267 0.012197699 -0.53758 0.5908655
#> year^10 -0.025618488 0.012238256 -2.09331 0.0363213 *
#> year^11 0.011818501 0.012283076 0.96218 0.3359604
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00149 Deviance explained = 0.495%
#> -REML = -1.752e+05 Scale est. = 1 n = 62762
Code
maper_gam_5 |>
summarise_r2(
data |>
nrow()
) |>
md_named_tibble()
maper_gam_5
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
maper_gam_5 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_gam_5
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 175246.8729737456 |
AIC | -350467.7459474911 |
BIC | -350350.1335815321 |
deviance | 67168.5892269482 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0014912039 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
maper_gam_5 |>
summarise_coefs() |>
md_named_tibble()
maper_gam_5
model.
Value | |
---|---|
[Mean] | -0.3107479047 |
mean((Intercept)) | -3.6710076200 |
year.L | 0.0278421438 |
year.Q | -0.1343418412 |
year.C | -0.0824833604 |
year^4 | -0.0805488010 |
year^5 | 0.0792731188 |
year^6 | 0.0244299196 |
year^7 | 0.0355585277 |
year^8 | 0.0926603095 |
year^9 | -0.0065572665 |
year^10 | -0.0256184884 |
year^11 | 0.0118185012 |
Source: Created by the authors.
Code
maper_gam_5 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 4 iterations.
#> Gradient range [0.0000105819692,0.0000105819692]
#> (score -175203.8687 & scale 1).
#> Hessian positive definite, eigenvalue range [21654.98712,21654.98712].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_gam_5,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MAPER"
)
maper_gam_5
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
mpepr_gam_5 |> summary()
#>
#> Family: Beta regression(30.606)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.531198908 0.003292509 -1072.49476 < 2.22e-16 ***
#> year.L 0.153669624 0.011448326 13.42289 < 2.22e-16 ***
#> year.Q -0.049777612 0.011560586 -4.30580 0.000016638072 ***
#> year.C -0.061042356 0.011439084 -5.33630 0.000000094864 ***
#> year^4 -0.152562348 0.011424506 -13.35396 < 2.22e-16 ***
#> year^5 0.023769084 0.011408711 2.08342 0.0372134 *
#> year^6 0.053608763 0.011388065 4.70745 0.000002508330 ***
#> year^7 0.032808996 0.011321353 2.89797 0.0037558 **
#> year^8 0.051603530 0.011292849 4.56958 0.000004887127 ***
#> year^9 -0.007970576 0.011315547 -0.70439 0.4811890
#> year^10 0.012958743 0.011360197 1.14071 0.2539887
#> year^11 0.021167522 0.011499317 1.84076 0.0656562 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0125 Deviance explained = 0.712%
#> -REML = -1.6102e+05 Scale est. = 1 n = 62762
Code
mpepr_gam_5 |>
summarise_r2(
data |>
nrow()
) |>
md_named_tibble()
mpepr_gam_5
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
mpepr_gam_5 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mpepr_gam_5
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 161065.5110249491 |
AIC | -322105.0220498982 |
BIC | -321987.4096839392 |
deviance | 67283.6524796425 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0125163328 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
mpepr_gam_5 |>
summarise_coefs() |>
md_named_tibble()
mpepr_gam_5
model.
Value | |
---|---|
[Mean] | -0.2877471282 |
mean((Intercept)) | -3.5311989080 |
year.L | 0.1536696243 |
year.Q | -0.0497776119 |
year.C | -0.0610423562 |
year^4 | -0.1525623482 |
year^5 | 0.0237690842 |
year^6 | 0.0536087631 |
year^7 | 0.0328089956 |
year^8 | 0.0516035296 |
year^9 | -0.0079705756 |
year^10 | 0.0129587426 |
year^11 | 0.0211675220 |
Source: Created by the authors.
Code
mpepr_gam_5 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 3 iterations.
#> Gradient range [0.06495643988,0.06495643988]
#> (score -161021.6064 & scale 1).
#> Hessian positive definite, eigenvalue range [24663.52749,24663.52749].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mpepr_gam_5,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_5
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
maper_mpepr_gam_5 |> summary()
#>
#> Family: Beta regression(20.406)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.877375499 0.003155866 -911.75453 < 2.22e-16 ***
#> year.L 0.013586860 0.010994060 1.23584 0.21652
#> year.Q -0.078213051 0.011085949 -7.05515 0.0000000000017241 ***
#> year.C -0.070927872 0.010973416 -6.46361 0.0000000001022349 ***
#> year^4 -0.128530430 0.010948898 -11.73912 < 2.22e-16 ***
#> year^5 0.046957484 0.010954014 4.28678 0.0000181278821559 ***
#> year^6 0.047973032 0.010925669 4.39086 0.0000112905702940 ***
#> year^7 0.056102588 0.010852567 5.16952 0.0000002346931480 ***
#> year^8 0.076581290 0.010814002 7.08168 0.0000000000014242 ***
#> year^9 -0.008376653 0.010832943 -0.77326 0.43937
#> year^10 0.006769788 0.010884854 0.62195 0.53398
#> year^11 0.004430077 0.010985307 0.40327 0.68675
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.000592 Deviance explained = 0.552%
#> -REML = -1.2164e+05 Scale est. = 1 n = 62762
Code
maper_mpepr_gam_5 |>
summarise_r2(
data |>
nrow()
) |>
md_named_tibble()
maper_mpepr_gam_5
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
maper_mpepr_gam_5 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_mpepr_gam_5
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 121681.2905335238 |
AIC | -243336.5810670477 |
BIC | -243218.9687010887 |
deviance | 64886.5484799453 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0005918146 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
maper_mpepr_gam_5 |>
summarise_coefs() |>
md_named_tibble()
maper_mpepr_gam_5
model.
Value | |
---|---|
[Mean] | -0.2425851988 |
mean((Intercept)) | -2.8773754994 |
year.L | 0.0135868602 |
year.Q | -0.0782130509 |
year.C | -0.0709278716 |
year^4 | -0.1285304305 |
year^5 | 0.0469574842 |
year^6 | 0.0479730318 |
year^7 | 0.0561025880 |
year^8 | 0.0765812902 |
year^9 | -0.0083766531 |
year^10 | 0.0067697882 |
year^11 | 0.0044300767 |
Source: Created by the authors.
Code
maper_mpepr_gam_5 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 4 iterations.
#> Gradient range [0.1322078474,0.1322078474]
#> (score -121636.8789 & scale 1).
#> Hessian positive definite, eigenvalue range [26961.29141,26961.29141].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_mpepr_gam_5,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_5
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By year
(Unordered)
In this model, the year
variable is treated as a unordered categorical variable.
mbepr_gam_6 |> summary()
#>
#> Family: Beta regression(17.638)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.95978829 0.01184997 -249.77179 < 2.22e-16 ***
#> year2009 0.18581894 0.01623717 11.44404 < 2.22e-16 ***
#> year2010 0.19650008 0.01620364 12.12691 < 2.22e-16 ***
#> year2011 0.11636277 0.01634690 7.11834 0.000000000001092351 ***
#> year2012 0.07206778 0.01640557 4.39288 0.000011185640406729 ***
#> year2013 0.16526735 0.01635417 10.10552 < 2.22e-16 ***
#> year2014 0.21516820 0.01625094 13.24035 < 2.22e-16 ***
#> year2015 0.14714754 0.01632144 9.01560 < 2.22e-16 ***
#> year2016 0.20560208 0.01618365 12.70431 < 2.22e-16 ***
#> year2017 0.15465732 0.01628361 9.49773 < 2.22e-16 ***
#> year2018 0.12309673 0.01633175 7.53727 0.000000000000047993 ***
#> year2019 0.09907351 0.01632576 6.06854 0.000000001290783738 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00327 Deviance explained = 0.525%
#> -REML = -1.1795e+05 Scale est. = 1 n = 62762
Code
mbepr_gam_6
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
mbepr_gam_6 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_gam_6
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 117994.6877479886 |
AIC | -235963.3754959772 |
BIC | -235845.7631300182 |
deviance | 64485.5210188823 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0032733397 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
mbepr_gam_6 |>
summarise_coefs() |>
md_named_tibble()
mbepr_gam_6
model.
Value | |
---|---|
[Mean] | -0.1065854982 |
mean((Intercept)) | -2.9597882866 |
year2009 | 0.1858189412 |
year2010 | 0.1965000821 |
year2011 | 0.1163627678 |
year2012 | 0.0720677836 |
year2013 | 0.1652673488 |
year2014 | 0.2151681982 |
year2015 | 0.1471475383 |
year2016 | 0.2056020840 |
year2017 | 0.1546573211 |
year2018 | 0.1230967302 |
year2019 | 0.0990735131 |
Source: Created by the authors.
Code
mbepr_gam_6 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [0.00000119875011,0.00000119875011]
#> (score -117951.854 & scale 1).
#> Hessian positive definite, eigenvalue range [26571.0456,26571.0456].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_gam_6,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_6
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
beipr_gam_6 |> summary()
#>
#> Family: Beta regression(25.798)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.722549043 0.009951744 -273.57506 < 2.22e-16 ***
#> year2009 0.093774149 0.013717615 6.83604 8.1413e-12 ***
#> year2010 0.106949012 0.013679330 7.81829 5.3544e-15 ***
#> year2011 0.025696817 0.013841904 1.85645 0.063389 .
#> year2012 -0.037917921 0.013952806 -2.71758 0.006576 **
#> year2013 0.070849601 0.013832071 5.12213 3.0211e-07 ***
#> year2014 0.080692900 0.013799146 5.84767 4.9850e-09 ***
#> year2015 0.124328975 0.013673487 9.09270 < 2.22e-16 ***
#> year2016 0.085008464 0.013717882 6.19691 5.7583e-10 ***
#> year2017 0.121341258 0.013658424 8.88399 < 2.22e-16 ***
#> year2018 0.117922729 0.013660107 8.63264 < 2.22e-16 ***
#> year2019 0.093714562 0.013667701 6.85664 7.0497e-12 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00784 Deviance explained = 0.52%
#> -REML = -1.1332e+05 Scale est. = 1 n = 62762
Code
beipr_gam_6
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
beipr_gam_6 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
beipr_gam_6
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 113362.5968849338 |
AIC | -226699.1937698676 |
BIC | -226581.5814039086 |
deviance | 63831.4178238829 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0078397415 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
beipr_gam_6 |>
summarise_coefs() |>
md_named_tibble()
beipr_gam_6
model.
Value | |
---|---|
[Mean] | -0.1533490415 |
mean((Intercept)) | -2.7225490430 |
year2009 | 0.0937741492 |
year2010 | 0.1069490117 |
year2011 | 0.0256968171 |
year2012 | -0.0379179214 |
year2013 | 0.0708496009 |
year2014 | 0.0806929002 |
year2015 | 0.1243289749 |
year2016 | 0.0850084637 |
year2017 | 0.1213412578 |
year2018 | 0.1179227286 |
year2019 | 0.0937145617 |
Source: Created by the authors.
Code
beipr_gam_6 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [0.000008758086041,0.000008758086041]
#> (score -113317.7701 & scale 1).
#> Hessian positive definite, eigenvalue range [29161.5517,29161.5517].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = beipr_gam_6,
type = 6,
x_label = "Years",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_6
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
mbepr_beipr_gam_6 |> summary()
#>
#> Family: Beta regression(16.296)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.998038053 0.009599818 -208.13291 < 2.22e-16 ***
#> year2009 0.115589875 0.013212260 8.74868 < 2.22e-16 ***
#> year2010 0.093268110 0.013236994 7.04602 0.0000000000018411 ***
#> year2011 0.020589852 0.013365365 1.54054 0.12342928
#> year2012 -0.046723027 0.013469180 -3.46888 0.00052262 ***
#> year2013 0.042609937 0.013403990 3.17890 0.00147835 **
#> year2014 0.068768866 0.013345526 5.15295 0.0000002564166243 ***
#> year2015 0.035954417 0.013361657 2.69087 0.00712670 **
#> year2016 0.032964579 0.013335521 2.47194 0.01343829 *
#> year2017 0.027139886 0.013355914 2.03205 0.04214858 *
#> year2018 0.009562646 0.013381355 0.71462 0.47484103
#> year2019 -0.004499079 0.013366541 -0.33659 0.73642405
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.00446 Deviance explained = 0.406%
#> -REML = -78440 Scale est. = 1 n = 62762
Code
mbepr_beipr_gam_6
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0044644574 | very weak (negligible) | cohen1988 |
SE | 0.0005310049 | NA | NA |
Lower CI | 0.0034237070 | very weak (negligible) | cohen1988 |
Upper CI | 0.0055052078 | very weak (negligible) | cohen1988 |
Source: Created by the authors.
Code
mbepr_beipr_gam_6 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mbepr_beipr_gam_6
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 78485.5946634255 |
AIC | -156945.1893268510 |
BIC | -156827.5769608920 |
deviance | 61789.7893367161 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | 0.0044644574 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
mbepr_beipr_gam_6 |>
summarise_coefs() |>
md_named_tibble()
mbepr_beipr_gam_6
model.
Value | |
---|---|
[Mean] | -0.1335676658 |
mean((Intercept)) | -1.9980380529 |
year2009 | 0.1155898751 |
year2010 | 0.0932681104 |
year2011 | 0.0205898519 |
year2012 | -0.0467230271 |
year2013 | 0.0426099372 |
year2014 | 0.0687688662 |
year2015 | 0.0359544170 |
year2016 | 0.0329645792 |
year2017 | 0.0271398862 |
year2018 | 0.0095626455 |
year2019 | -0.0044990787 |
Source: Created by the authors.
Code
mbepr_beipr_gam_6 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 5 iterations.
#> Gradient range [0.01219855661,0.01219855661]
#> (score -78440.49037 & scale 1).
#> Hessian positive definite, eigenvalue range [30826.9659,30826.9659].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mbepr_beipr_gam_6,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_6
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
maper_gam_6 |> summary()
#>
#> Family: Beta regression(24.482)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.758990530 0.012747837 -294.87282 < 2.22e-16 ***
#> year2009 0.083861654 0.017695514 4.73915 0.000002146191308382 ***
#> year2010 0.126540065 0.017619775 7.18171 0.000000000000688463 ***
#> year2011 0.058108129 0.017719687 3.27930 0.0010407 **
#> year2012 0.030105437 0.017738763 1.69716 0.0896673 .
#> year2013 0.124723975 0.017728977 7.03504 0.000000000001992108 ***
#> year2014 0.134593862 0.017697517 7.60524 0.000000000000028438 ***
#> year2015 0.119405131 0.017665879 6.75908 0.000000000013886856 ***
#> year2016 0.174963896 0.017546352 9.97153 < 2.22e-16 ***
#> year2017 0.190981494 0.017536505 10.89051 < 2.22e-16 ***
#> year2018 0.015059851 0.017772131 0.84739 0.3967802
#> year2019 -0.002548577 0.017742683 -0.14364 0.8857840
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00149 Deviance explained = 0.495%
#> -REML = -1.7521e+05 Scale est. = 1 n = 62762
Code
maper_gam_6
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
maper_gam_6 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_gam_6
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 175246.8729737457 |
AIC | -350467.7459474914 |
BIC | -350350.1335815324 |
deviance | 67168.5892269479 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0014912039 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
maper_gam_6 |>
summarise_coefs() |>
md_named_tibble()
maper_gam_6
model.
Value | |
---|---|
[Mean] | -0.2252663011 |
mean((Intercept)) | -3.7589905297 |
year2009 | 0.0838616542 |
year2010 | 0.1265400648 |
year2011 | 0.0581081288 |
year2012 | 0.0301054374 |
year2013 | 0.1247239748 |
year2014 | 0.1345938625 |
year2015 | 0.1194051310 |
year2016 | 0.1749638956 |
year2017 | 0.1909814936 |
year2018 | 0.0150598506 |
year2019 | -0.0025485765 |
Source: Created by the authors.
Code
maper_gam_6 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 4 iterations.
#> Gradient range [0.00001058207839,0.00001058207839]
#> (score -175205.1112 & scale 1).
#> Hessian positive definite, eigenvalue range [21654.98712,21654.98712].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_gam_6,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MAPER"
)
maper_gam_6
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
mpepr_gam_6 |> summary()
#>
#> Family: Beta regression(30.606)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.65301970 0.01197372 -305.08648 < 2.22e-16 ***
#> year2009 0.08052386 0.01658941 4.85393 0.00000121037627 ***
#> year2010 0.14196333 0.01646757 8.62078 < 2.22e-16 ***
#> year2011 0.09031173 0.01656285 5.45267 0.00000004961916 ***
#> year2012 0.06937855 0.01658203 4.18396 0.00002864737535 ***
#> year2013 0.09082284 0.01665623 5.45278 0.00000004958750 ***
#> year2014 0.07948343 0.01665956 4.77104 0.00000183275897 ***
#> year2015 0.14890933 0.01648873 9.03098 < 2.22e-16 ***
#> year2016 0.21623256 0.01633233 13.23954 < 2.22e-16 ***
#> year2017 0.28393957 0.01622278 17.50252 < 2.22e-16 ***
#> year2018 0.15693014 0.01644361 9.54353 < 2.22e-16 ***
#> year2019 0.10335415 0.01648944 6.26790 0.00000000036595 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0125 Deviance explained = 0.712%
#> -REML = -1.6102e+05 Scale est. = 1 n = 62762
Code
mpepr_gam_6
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
mpepr_gam_6 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
mpepr_gam_6
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 161065.5110249493 |
AIC | -322105.0220498986 |
BIC | -321987.4096839396 |
deviance | 67283.6524796410 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0125163328 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
mpepr_gam_6 |>
summarise_coefs() |>
md_named_tibble()
mpepr_gam_6
model.
Value | |
---|---|
[Mean] | -0.1825975171 |
mean((Intercept)) | -3.6530196992 |
year2009 | 0.0805238602 |
year2010 | 0.1419633321 |
year2011 | 0.0903117322 |
year2012 | 0.0693785534 |
year2013 | 0.0908228362 |
year2014 | 0.0794834342 |
year2015 | 0.1489093298 |
year2016 | 0.2162325595 |
year2017 | 0.2839395689 |
year2018 | 0.1569301378 |
year2019 | 0.1033541501 |
Source: Created by the authors.
Code
mpepr_gam_6 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 3 iterations.
#> Gradient range [0.06495643969,0.06495643969]
#> (score -161022.8488 & scale 1).
#> Hessian positive definite, eigenvalue range [24663.52749,24663.52749].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = mpepr_gam_6,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_6
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
maper_mpepr_gam_6 |> summary()
#>
#> Family: Beta regression(20.406)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.94365857 0.01135972 -259.13115 < 2.22e-16 ***
#> year2009 0.07932584 0.01572402 5.04488 0.000000453801089922 ***
#> year2010 0.12042580 0.01563447 7.70258 0.000000000000013334 ***
#> year2011 0.04361417 0.01577935 2.76400 0.00570971 **
#> year2012 0.03529717 0.01577849 2.23704 0.02528347 *
#> year2013 0.05934068 0.01584106 3.74601 0.00017967 ***
#> year2014 0.05298592 0.01583706 3.34569 0.00082078 ***
#> year2015 0.07218084 0.01575428 4.58166 0.000004612884552903 ***
#> year2016 0.14183664 0.01559137 9.09713 < 2.22e-16 ***
#> year2017 0.19522378 0.01550575 12.59041 < 2.22e-16 ***
#> year2018 0.01346871 0.01583000 0.85083 0.39486145
#> year2019 -0.01830271 0.01584025 -1.15546 0.24790357
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.000592 Deviance explained = 0.552%
#> -REML = -1.2164e+05 Scale est. = 1 n = 62762
Code
maper_mpepr_gam_6
model.
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0 | no effect | cohen1988 |
SE | 0 | NA | NA |
Lower CI | 0 | no effect | cohen1988 |
Upper CI | 0 | no effect | cohen1988 |
Source: Created by the authors.
Code
maper_mpepr_gam_6 |>
broom::glance() |>
tidyr::pivot_longer(dplyr::everything()) |>
md_named_tibble()
maper_mpepr_gam_6
model.
Value | |
---|---|
df | 12.0000000000 |
logLik | 121681.2905335242 |
AIC | -243336.5810670483 |
BIC | -243218.9687010893 |
deviance | 64886.5484799459 |
df.residual | 62750.0000000000 |
nobs | 62762.0000000000 |
adj.r.squared | -0.0005918146 |
npar | 12.0000000000 |
Source: Created by the authors.
Code
maper_mpepr_gam_6 |>
summarise_coefs() |>
md_named_tibble()
maper_mpepr_gam_6
model.
Value | |
---|---|
[Mean] | -0.1790218116 |
mean((Intercept)) | -2.9436585686 |
year2009 | 0.0793258356 |
year2010 | 0.1204258006 |
year2011 | 0.0436141695 |
year2012 | 0.0352971701 |
year2013 | 0.0593406827 |
year2014 | 0.0529859157 |
year2015 | 0.0721808446 |
year2016 | 0.1418366420 |
year2017 | 0.1952237764 |
year2018 | 0.0134687055 |
year2019 | -0.0183027132 |
Source: Created by the authors.
Code
maper_mpepr_gam_6 |> mgcViz::getViz() |> mgcViz::check.gamViz()
#>
#> Method: REML Optimizer: outer newton
#> full convergence after 4 iterations.
#> Gradient range [0.132207848,0.132207848]
#> (score -121638.1214 & scale 1).
#> Hessian positive definite, eigenvalue range [26961.29141,26961.29141].
#> Model rank = 12 / 12
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam(
model = maper_mpepr_gam_6,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_6
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Modeling the Data by MISFS-R Clusters
By s(spei_12m)
+ te(gini_index, gdp_per_capita)
+ s(year)
(Continuous year
)
Code
mbepr_gam_1_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(mbepr_gam_1_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(20.729)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.795643059 0.009044634 -309.0941 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 2.625152 3.352185 17.1662 0.0012556 **
#> te(gini_index,gdp_per_capita) 15.262067 17.108138 716.3053 < 2.22e-16 ***
#> s(year) 7.362562 8.341109 202.9105 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0217 Deviance explained = 11.4%
#> -REML = -13718 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.166797819e-2 weak cohen1988
#> 2 SE 3.230899836e-3 <NA> <NA>
#> 3 Lower CI 1.533553088e-2 very weak (negligible) cohen1988
#> 4 Upper CI 2.800042551e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.624978141e+1
#> 2 logLik 1.377316453e+4
#> 3 AIC -2.748483049e+4
#> 4 BIC -2.727291720e+4
#> 5 deviance 7.430278253e+3
#> 6 df.residual 7.244750219e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared 2.166797819e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.930966462e-1
#> 2 mean((Intercept)) -2.795643059e+0
#> 3 mean(s(spei_12m)) -5.487167850e-3
#> 4 mean(te(gini_index,gdp_per_capita)) -2.884305081e-1
#> 5 mean(s(year)) 1.626893310e-1
#> 6 s(spei_12m).1 -3.430376599e-2
#> 7 s(spei_12m).2 -1.126565527e-2
#> 8 s(spei_12m).3 -3.089171470e-3
#> 9 s(spei_12m).4 -1.391367581e-3
#> 10 s(spei_12m).5 7.230169004e-4
#> 11 s(spei_12m).6 -1.212338684e-3
#> 12 s(spei_12m).7 9.005620330e-4
#> 13 s(spei_12m).8 -1.768014887e-2
#> 14 s(spei_12m).9 1.793435828e-2
#> 15 te(gini_index,gdp_per_capita).1 -7.813926375e-1
#> 16 te(gini_index,gdp_per_capita).2 -7.919154701e-1
#> 17 te(gini_index,gdp_per_capita).3 -7.559748361e-1
#> 18 te(gini_index,gdp_per_capita).4 -1.468972207e+0
#> 19 te(gini_index,gdp_per_capita).5 2.668087472e-2
#> 20 te(gini_index,gdp_per_capita).6 2.776966086e-1
#> 21 te(gini_index,gdp_per_capita).7 -5.257188554e-1
#> 22 te(gini_index,gdp_per_capita).8 3.992474149e-1
#> 23 te(gini_index,gdp_per_capita).9 -1.828117936e+0
#> 24 te(gini_index,gdp_per_capita).10 3.126946553e-1
#> 25 te(gini_index,gdp_per_capita).11 2.010032678e-1
#> 26 te(gini_index,gdp_per_capita).12 -1.034441610e-1
#> 27 te(gini_index,gdp_per_capita).13 1.938034274e-1
#> 28 te(gini_index,gdp_per_capita).14 -1.981428611e+0
#> 29 te(gini_index,gdp_per_capita).15 5.697863072e-1
#> 30 te(gini_index,gdp_per_capita).16 4.735679131e-1
#> 31 te(gini_index,gdp_per_capita).17 -7.090321662e-2
#> 32 te(gini_index,gdp_per_capita).18 3.329906253e-1
#> 33 te(gini_index,gdp_per_capita).19 -2.177282976e+0
#> 34 te(gini_index,gdp_per_capita).20 1.296473777e+0
#> 35 te(gini_index,gdp_per_capita).21 1.083801882e+0
#> 36 te(gini_index,gdp_per_capita).22 8.943491071e-1
#> 37 te(gini_index,gdp_per_capita).23 8.249366727e-1
#> 38 te(gini_index,gdp_per_capita).24 -3.324213821e+0
#> 39 s(year).1 -1.450876069e-1
#> 40 s(year).2 4.342185400e-1
#> 41 s(year).3 4.566024520e-1
#> 42 s(year).4 -4.540194677e-1
#> 43 s(year).5 -9.075791317e-2
#> 44 s(year).6 -1.808896566e-1
#> 45 s(year).7 -1.291800244e-1
#> 46 s(year).8 8.953645937e-1
#> 47 s(year).9 6.779530617e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 1.223297314e-24 0.5789015684 0.3501118687 0.6460694532
#> 2 observed 1.223297314e-24 0.5503208582 0.05499552123 0.5041504295
#> 3 estimate 1.223297314e-24 0.4778441467 0.01041126877 0.4377095149
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.439)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.102250572 0.004988525 -621.8773 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.517764 8.474534 81.86783 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.251790 19.306294 2283.08647 < 2.22e-16 ***
#> s(year) 8.417152 8.901870 429.00344 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.021 Deviance explained = 9.53%
#> -REML = -63796 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.518670533e+1
#> 2 logLik 6.388686557e+4
#> 3 AIC -1.276963657e+5
#> 4 BIC -1.273762044e+5
#> 5 deviance 3.045153026e+4
#> 6 df.residual 2.900981329e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -2.098637332e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -7.463124605e-2
#> 2 mean((Intercept)) -3.102250572e+0
#> 3 mean(s(spei_12m)) 2.984465222e-2
#> 4 mean(te(gini_index,gdp_per_capita)) -7.116716275e-2
#> 5 mean(s(year)) 1.480574475e-1
#> 6 s(spei_12m).1 1.294476636e-1
#> 7 s(spei_12m).2 3.997800169e-2
#> 8 s(spei_12m).3 1.405800878e-3
#> 9 s(spei_12m).4 3.980934034e-2
#> 10 s(spei_12m).5 -6.162655462e-2
#> 11 s(spei_12m).6 9.999364729e-2
#> 12 s(spei_12m).7 -5.697720159e-2
#> 13 s(spei_12m).8 -9.282737944e-2
#> 14 s(spei_12m).9 1.693985518e-1
#> 15 te(gini_index,gdp_per_capita).1 -1.117481278e+0
#> 16 te(gini_index,gdp_per_capita).2 -1.430371419e+0
#> 17 te(gini_index,gdp_per_capita).3 -1.479994779e+0
#> 18 te(gini_index,gdp_per_capita).4 7.639957688e+0
#> 19 te(gini_index,gdp_per_capita).5 2.097924344e-1
#> 20 te(gini_index,gdp_per_capita).6 1.928250857e-1
#> 21 te(gini_index,gdp_per_capita).7 -4.094456445e-1
#> 22 te(gini_index,gdp_per_capita).8 2.438300958e-1
#> 23 te(gini_index,gdp_per_capita).9 2.713363889e+0
#> 24 te(gini_index,gdp_per_capita).10 5.898977531e-1
#> 25 te(gini_index,gdp_per_capita).11 2.368682044e-1
#> 26 te(gini_index,gdp_per_capita).12 -6.258269364e-2
#> 27 te(gini_index,gdp_per_capita).13 1.773161102e-1
#> 28 te(gini_index,gdp_per_capita).14 1.007606960e+0
#> 29 te(gini_index,gdp_per_capita).15 6.564005760e-1
#> 30 te(gini_index,gdp_per_capita).16 5.481555689e-1
#> 31 te(gini_index,gdp_per_capita).17 -2.456899455e-1
#> 32 te(gini_index,gdp_per_capita).18 7.011390645e-1
#> 33 te(gini_index,gdp_per_capita).19 -6.511962151e-1
#> 34 te(gini_index,gdp_per_capita).20 9.230225083e-1
#> 35 te(gini_index,gdp_per_capita).21 -3.855274353e-1
#> 36 te(gini_index,gdp_per_capita).22 -1.174078296e+0
#> 37 te(gini_index,gdp_per_capita).23 -1.210255973e+0
#> 38 te(gini_index,gdp_per_capita).24 -9.381564164e+0
#> 39 s(year).1 -5.251835013e-2
#> 40 s(year).2 6.814330260e-1
#> 41 s(year).3 3.110073811e-1
#> 42 s(year).4 -5.828026928e-1
#> 43 s(year).5 -8.931160612e-2
#> 44 s(year).6 -2.236123138e-1
#> 45 s(year).7 -2.098684515e-1
#> 46 s(year).8 1.188563753e+0
#> 47 s(year).9 3.096262816e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.135124790e-24 0.4386344126 2.754406321e-1 0.5079354649
#> 2 observed 3.135124790e-24 0.2157212095 6.229402277e-2 0.2038108022
#> 3 estimate 3.135124790e-24 0.3128056866 3.775205272e-3 0.3758159024
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(42.04)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.623998734 0.004146837 -632.7711 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.939121 8.712967 85.85996 < 2e-16 ***
#> te(gini_index,gdp_per_capita) 16.128292 17.479877 1132.03956 < 2e-16 ***
#> s(year) 1.407890 1.697712 6.45912 0.068373 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0671 Deviance explained = 7.5%
#> -REML = -36310 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 6.706232381e-2 weak cohen1988
#> 2 SE 3.388273257e-3 <NA> <NA>
#> 3 Lower CI 6.042143026e-2 weak cohen1988
#> 4 Upper CI 7.370321737e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.647530313e+1
#> 2 logLik 3.637660887e+4
#> 3 AIC -7.269343663e+4
#> 4 BIC -7.245931318e+4
#> 5 deviance 1.814542990e+4
#> 6 df.residual 1.860652470e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 6.706232381e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 8.400488773e-2
#> 2 mean((Intercept)) -2.623998734e+0
#> 3 mean(s(spei_12m)) 4.501615748e-3
#> 4 mean(te(gini_index,gdp_per_capita)) 2.575394181e-1
#> 5 mean(s(year)) 1.638703272e-3
#> 6 s(spei_12m).1 3.236621012e-3
#> 7 s(spei_12m).2 -2.437321784e-2
#> 8 s(spei_12m).3 2.634296172e-2
#> 9 s(spei_12m).4 -6.571784403e-2
#> 10 s(spei_12m).5 4.729100183e-2
#> 11 s(spei_12m).6 -5.286260423e-2
#> 12 s(spei_12m).7 1.074882038e-1
#> 13 s(spei_12m).8 -1.670701926e-1
#> 14 s(spei_12m).9 1.661796121e-1
#> 15 te(gini_index,gdp_per_capita).1 -7.854839569e-1
#> 16 te(gini_index,gdp_per_capita).2 -7.593964609e-1
#> 17 te(gini_index,gdp_per_capita).3 -6.948372706e-1
#> 18 te(gini_index,gdp_per_capita).4 -7.253412803e+0
#> 19 te(gini_index,gdp_per_capita).5 1.590780060e-1
#> 20 te(gini_index,gdp_per_capita).6 1.050882823e-1
#> 21 te(gini_index,gdp_per_capita).7 -3.068315843e-1
#> 22 te(gini_index,gdp_per_capita).8 2.095167534e-1
#> 23 te(gini_index,gdp_per_capita).9 -1.418373653e+0
#> 24 te(gini_index,gdp_per_capita).10 3.698354079e-1
#> 25 te(gini_index,gdp_per_capita).11 8.033403794e-2
#> 26 te(gini_index,gdp_per_capita).12 -4.055628616e-2
#> 27 te(gini_index,gdp_per_capita).13 -1.510066888e-2
#> 28 te(gini_index,gdp_per_capita).14 2.866002552e-1
#> 29 te(gini_index,gdp_per_capita).15 7.694747718e-1
#> 30 te(gini_index,gdp_per_capita).16 4.138644192e-1
#> 31 te(gini_index,gdp_per_capita).17 -4.073844682e-1
#> 32 te(gini_index,gdp_per_capita).18 5.147829413e-1
#> 33 te(gini_index,gdp_per_capita).19 2.054108195e+0
#> 34 te(gini_index,gdp_per_capita).20 5.513293915e-1
#> 35 te(gini_index,gdp_per_capita).21 1.903922664e-1
#> 36 te(gini_index,gdp_per_capita).22 7.985740129e-2
#> 37 te(gini_index,gdp_per_capita).23 7.458043600e-2
#> 38 te(gini_index,gdp_per_capita).24 1.200348062e+1
#> 39 s(year).1 8.209007339e-4
#> 40 s(year).2 9.493248238e-4
#> 41 s(year).3 8.775062508e-5
#> 42 s(year).4 3.390150129e-4
#> 43 s(year).5 -5.241935498e-5
#> 44 s(year).6 5.217397152e-4
#> 45 s(year).7 1.882983332e-4
#> 46 s(year).8 -3.591497780e-3
#> 47 s(year).9 1.548521734e-2
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.588613525e-24 0.8429077979 5.455094612e-1 0.8634520043
#> 2 observed 2.588613525e-24 0.5753785552 1.303415876e-1 0.6524882764
#> 3 estimate 2.588613525e-24 0.6993780697 5.125519725e-3 0.6055875044
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(37.786)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.28815574 0.01047845 -218.3677 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 3.458935 4.363734 9.53110 0.062841 .
#> te(gini_index,gdp_per_capita) 11.254200 13.340333 170.35860 < 2e-16 ***
#> s(year) 6.745836 7.842378 20.11156 0.012298 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0993 Deviance explained = 11.9%
#> -REML = -4363.1 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0.09928736713 weak cohen1988
#> 2 SE 0.01075978781 <NA> <NA>
#> 3 Lower CI 0.07819857054 weak cohen1988
#> 4 Upper CI 0.1203761637 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.245897130e+1
#> 2 logLik 4.406544281e+3
#> 3 AIC -8.757995671e+3
#> 4 BIC -8.597148347e+3
#> 5 deviance 2.445576755e+3
#> 6 df.residual 2.515541029e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 9.928736713e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -6.422692342e-2
#> 2 mean((Intercept)) -2.288155742e+0
#> 3 mean(s(spei_12m)) 1.003389163e-2
#> 4 mean(te(gini_index,gdp_per_capita)) -3.672762514e-2
#> 5 mean(s(year)) 3.528400144e-2
#> 6 s(spei_12m).1 -6.011113534e-2
#> 7 s(spei_12m).2 6.485059761e-2
#> 8 s(spei_12m).3 1.415323563e-3
#> 9 s(spei_12m).4 -1.550120963e-2
#> 10 s(spei_12m).5 -9.271655262e-3
#> 11 s(spei_12m).6 2.137636431e-2
#> 12 s(spei_12m).7 2.566741612e-3
#> 13 s(spei_12m).8 1.300486532e-1
#> 14 s(spei_12m).9 -4.506865532e-2
#> 15 te(gini_index,gdp_per_capita).1 4.666552047e-2
#> 16 te(gini_index,gdp_per_capita).2 -8.130537091e-2
#> 17 te(gini_index,gdp_per_capita).3 -1.427673545e-1
#> 18 te(gini_index,gdp_per_capita).4 -2.090337397e+0
#> 19 te(gini_index,gdp_per_capita).5 4.842679971e-1
#> 20 te(gini_index,gdp_per_capita).6 -1.617331765e-1
#> 21 te(gini_index,gdp_per_capita).7 1.313062364e-1
#> 22 te(gini_index,gdp_per_capita).8 -4.131549058e-1
#> 23 te(gini_index,gdp_per_capita).9 -9.355616176e-1
#> 24 te(gini_index,gdp_per_capita).10 4.711012128e-1
#> 25 te(gini_index,gdp_per_capita).11 1.982728604e-2
#> 26 te(gini_index,gdp_per_capita).12 5.380356245e-2
#> 27 te(gini_index,gdp_per_capita).13 -1.849290278e-1
#> 28 te(gini_index,gdp_per_capita).14 -6.055423680e-1
#> 29 te(gini_index,gdp_per_capita).15 4.312181056e-1
#> 30 te(gini_index,gdp_per_capita).16 -5.324876961e-2
#> 31 te(gini_index,gdp_per_capita).17 1.299517607e-1
#> 32 te(gini_index,gdp_per_capita).18 -3.742066083e-1
#> 33 te(gini_index,gdp_per_capita).19 -2.075070108e-1
#> 34 te(gini_index,gdp_per_capita).20 2.419593495e-1
#> 35 te(gini_index,gdp_per_capita).21 3.104778935e-1
#> 36 te(gini_index,gdp_per_capita).22 2.729312890e-1
#> 37 te(gini_index,gdp_per_capita).23 6.400385850e-2
#> 38 te(gini_index,gdp_per_capita).24 1.711316531e+0
#> 39 s(year).1 1.486357195e-2
#> 40 s(year).2 6.266042012e-2
#> 41 s(year).3 1.604609443e-1
#> 42 s(year).4 -2.187380413e-1
#> 43 s(year).5 5.521070808e-3
#> 44 s(year).6 4.122053216e-2
#> 45 s(year).7 -4.348998186e-2
#> 46 s(year).8 1.730840398e-1
#> 47 s(year).9 1.219734571e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.623684980e-25 0.5766265013 4.569162593e-1 0.6028488674
#> 2 observed 2.623684980e-25 0.3738038289 3.268166092e-1 0.1008586203
#> 3 estimate 2.623684980e-25 0.4331896267 9.220398167e-3 0.3812821727
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_gam_1_by_misfs,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_1_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
beipr_gam_1_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(beipr_gam_1_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(29.927)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.679184485 0.007749678 -345.7156 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.008906 5.025095 28.59486 0.000029003 ***
#> te(gini_index,gdp_per_capita) 18.321140 19.732295 1107.04780 < 2.22e-16 ***
#> s(year) 5.247827 6.362810 273.16639 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.113 Deviance explained = 15.9%
#> -REML = -13621 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.126265005e-1 weak cohen1988
#> 2 SE 6.681204739e-3 <NA> <NA>
#> 3 Lower CI 9.953157984e-2 weak cohen1988
#> 4 Upper CI 1.257214212e-1 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.857787398e+1
#> 2 logLik 1.368966200e+4
#> 3 AIC -2.731397026e+4
#> 4 BIC -2.708877272e+4
#> 5 deviance 7.384652757e+3
#> 6 df.residual 7.242422126e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared 1.126265005e-1
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.988119945e-1
#> 2 mean((Intercept)) -2.679184485e+0
#> 3 mean(s(spei_12m)) -6.275863881e-3
#> 4 mean(te(gini_index,gdp_per_capita)) -2.521729677e-1
#> 5 mean(s(year)) 2.654474686e-2
#> 6 s(spei_12m).1 -7.816435786e-2
#> 7 s(spei_12m).2 -7.873479570e-2
#> 8 s(spei_12m).3 2.479553220e-3
#> 9 s(spei_12m).4 -2.024754700e-2
#> 10 s(spei_12m).5 -1.533618028e-2
#> 11 s(spei_12m).6 2.506515413e-2
#> 12 s(spei_12m).7 -1.207934153e-2
#> 13 s(spei_12m).8 1.696711051e-1
#> 14 s(spei_12m).9 -4.913636505e-2
#> 15 te(gini_index,gdp_per_capita).1 -9.716311011e-1
#> 16 te(gini_index,gdp_per_capita).2 -6.402004849e-1
#> 17 te(gini_index,gdp_per_capita).3 -4.628739390e-1
#> 18 te(gini_index,gdp_per_capita).4 1.323128365e+0
#> 19 te(gini_index,gdp_per_capita).5 3.518020371e-1
#> 20 te(gini_index,gdp_per_capita).6 9.047360727e-2
#> 21 te(gini_index,gdp_per_capita).7 -4.815479778e-1
#> 22 te(gini_index,gdp_per_capita).8 2.910297791e-1
#> 23 te(gini_index,gdp_per_capita).9 -6.862851409e-1
#> 24 te(gini_index,gdp_per_capita).10 5.727064881e-1
#> 25 te(gini_index,gdp_per_capita).11 1.419662814e-1
#> 26 te(gini_index,gdp_per_capita).12 -9.171517126e-2
#> 27 te(gini_index,gdp_per_capita).13 1.474603584e-1
#> 28 te(gini_index,gdp_per_capita).14 -1.449700687e+0
#> 29 te(gini_index,gdp_per_capita).15 7.084891586e-1
#> 30 te(gini_index,gdp_per_capita).16 4.267627532e-1
#> 31 te(gini_index,gdp_per_capita).17 -1.161241199e-2
#> 32 te(gini_index,gdp_per_capita).18 2.842937791e-1
#> 33 te(gini_index,gdp_per_capita).19 -2.235037373e+0
#> 34 te(gini_index,gdp_per_capita).20 7.330143626e-1
#> 35 te(gini_index,gdp_per_capita).21 1.126906336e+0
#> 36 te(gini_index,gdp_per_capita).22 3.730401705e-1
#> 37 te(gini_index,gdp_per_capita).23 4.797906205e-1
#> 38 te(gini_index,gdp_per_capita).24 -6.072411035e+0
#> 39 s(year).1 9.618514156e-2
#> 40 s(year).2 -1.122048579e-1
#> 41 s(year).3 8.844189869e-2
#> 42 s(year).4 -1.037486026e-2
#> 43 s(year).5 2.281042539e-2
#> 44 s(year).6 1.110665283e-2
#> 45 s(year).7 4.885185680e-3
#> 46 s(year).8 -1.106377366e-2
#> 47 s(year).9 1.491169093e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 1.223297314e-24 0.5789015684 0.3501118687 0.6460694532
#> 2 observed 1.223297314e-24 0.5131336181 0.05841313021 0.5408921427
#> 3 estimate 1.223297314e-24 0.4778441467 0.01041126877 0.4377095149
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(26.708)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.875758685 0.004266395 -674.0489 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.996796 8.741042 69.16149 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 17.848357 18.961905 2744.71003 < 2.22e-16 ***
#> s(year) 7.506942 8.447865 403.24420 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0464 Deviance explained = 11.1%
#> -REML = -57787 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.435209424e+1
#> 2 logLik 5.787344510e+4
#> 3 AIC -1.156714009e+5
#> 4 BIC -1.153590034e+5
#> 5 deviance 3.026665161e+4
#> 6 df.residual 2.901064791e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -4.637448924e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.173049890e-1
#> 2 mean((Intercept)) -2.875758685e+0
#> 3 mean(s(spei_12m)) -5.750406644e-3
#> 4 mean(te(gini_index,gdp_per_capita)) -1.291007819e-1
#> 5 mean(s(year)) 1.090907316e-1
#> 6 s(spei_12m).1 1.930241846e-1
#> 7 s(spei_12m).2 -3.205476763e-1
#> 8 s(spei_12m).3 2.068329025e-1
#> 9 s(spei_12m).4 2.943805061e-1
#> 10 s(spei_12m).5 -7.827901559e-2
#> 11 s(spei_12m).6 2.247952867e-1
#> 12 s(spei_12m).7 -1.460797499e-1
#> 13 s(spei_12m).8 -7.538924529e-1
#> 14 s(spei_12m).9 3.280123550e-1
#> 15 te(gini_index,gdp_per_capita).1 -1.298453329e+0
#> 16 te(gini_index,gdp_per_capita).2 -1.407881216e+0
#> 17 te(gini_index,gdp_per_capita).3 -1.422221201e+0
#> 18 te(gini_index,gdp_per_capita).4 1.614112556e+1
#> 19 te(gini_index,gdp_per_capita).5 2.680340730e-1
#> 20 te(gini_index,gdp_per_capita).6 1.869687808e-1
#> 21 te(gini_index,gdp_per_capita).7 -3.989737509e-1
#> 22 te(gini_index,gdp_per_capita).8 2.284350691e-1
#> 23 te(gini_index,gdp_per_capita).9 5.482448652e+0
#> 24 te(gini_index,gdp_per_capita).10 4.684844672e-1
#> 25 te(gini_index,gdp_per_capita).11 2.166084015e-1
#> 26 te(gini_index,gdp_per_capita).12 -5.866125383e-2
#> 27 te(gini_index,gdp_per_capita).13 1.739122641e-1
#> 28 te(gini_index,gdp_per_capita).14 1.768170883e+0
#> 29 te(gini_index,gdp_per_capita).15 5.468305065e-1
#> 30 te(gini_index,gdp_per_capita).16 5.396716091e-1
#> 31 te(gini_index,gdp_per_capita).17 -2.150036823e-1
#> 32 te(gini_index,gdp_per_capita).18 6.851331819e-1
#> 33 te(gini_index,gdp_per_capita).19 -1.881119515e+0
#> 34 te(gini_index,gdp_per_capita).20 1.882986362e-1
#> 35 te(gini_index,gdp_per_capita).21 -4.525487445e-1
#> 36 te(gini_index,gdp_per_capita).22 -7.599497972e-1
#> 37 te(gini_index,gdp_per_capita).23 -5.854308740e-1
#> 38 te(gini_index,gdp_per_capita).24 -2.151229749e+1
#> 39 s(year).1 2.197061149e-2
#> 40 s(year).2 4.622917865e-1
#> 41 s(year).3 2.390786895e-1
#> 42 s(year).4 -3.736696005e-1
#> 43 s(year).5 -1.084281133e-2
#> 44 s(year).6 -1.885981610e-1
#> 45 s(year).7 -1.115324130e-1
#> 46 s(year).8 7.570421876e-1
#> 47 s(year).9 1.860762951e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.135124790e-24 0.4386344126 2.754406321e-1 0.5079354649
#> 2 observed 3.135124790e-24 0.08374416323 5.233322237e-2 0.3211231677
#> 3 estimate 3.135124790e-24 0.3128056866 3.775205272e-3 0.3758159024
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(81.649)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.516820673 0.002977206 -845.3632 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 3.962664 4.981092 33.72232 0.0000034991
#> te(gini_index,gdp_per_capita) 15.036614 16.607044 2182.39232 < 2.22e-16
#> s(year) 7.349877 8.276045 163.22600 < 2.22e-16
#>
#> s(spei_12m) ***
#> te(gini_index,gdp_per_capita) ***
#> s(year) ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.142 Deviance explained = 12.6%
#> -REML = -40396 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.416312059e-1 moderate cohen1988
#> 2 SE 4.530434894e-3 <NA> <NA>
#> 3 Lower CI 1.327517166e-1 moderate cohen1988
#> 4 Upper CI 1.505106951e-1 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.734915516e+1
#> 2 logLik 4.046466763e+4
#> 3 AIC -8.086789102e+4
#> 4 BIC -8.062725422e+4
#> 5 deviance 1.838236091e+4
#> 6 df.residual 1.860565084e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 1.416312059e-1
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 5.040337019e-2
#> 2 mean((Intercept)) -2.516820673e+0
#> 3 mean(s(spei_12m)) -8.771446791e-3
#> 4 mean(te(gini_index,gdp_per_capita)) 1.852122755e-1
#> 5 mean(s(year)) 3.533488889e-2
#> 6 s(spei_12m).1 -2.990822067e-3
#> 7 s(spei_12m).2 -1.115941972e-2
#> 8 s(spei_12m).3 4.750785726e-3
#> 9 s(spei_12m).4 -1.780187943e-2
#> 10 s(spei_12m).5 7.288172558e-3
#> 11 s(spei_12m).6 -1.503742542e-2
#> 12 s(spei_12m).7 7.243812410e-3
#> 13 s(spei_12m).8 -7.640707730e-2
#> 14 s(spei_12m).9 2.517083212e-2
#> 15 te(gini_index,gdp_per_capita).1 -5.263833006e-1
#> 16 te(gini_index,gdp_per_capita).2 -4.826032542e-1
#> 17 te(gini_index,gdp_per_capita).3 -4.134623929e-1
#> 18 te(gini_index,gdp_per_capita).4 -3.708147639e+0
#> 19 te(gini_index,gdp_per_capita).5 3.315635316e-1
#> 20 te(gini_index,gdp_per_capita).6 -1.651103424e-2
#> 21 te(gini_index,gdp_per_capita).7 -1.888045684e-1
#> 22 te(gini_index,gdp_per_capita).8 -3.973504291e-2
#> 23 te(gini_index,gdp_per_capita).9 -8.943094754e-1
#> 24 te(gini_index,gdp_per_capita).10 4.940271861e-1
#> 25 te(gini_index,gdp_per_capita).11 6.301319110e-2
#> 26 te(gini_index,gdp_per_capita).12 -5.218527818e-2
#> 27 te(gini_index,gdp_per_capita).13 -6.435487869e-2
#> 28 te(gini_index,gdp_per_capita).14 -6.388996714e-2
#> 29 te(gini_index,gdp_per_capita).15 6.630331078e-1
#> 30 te(gini_index,gdp_per_capita).16 2.477038890e-1
#> 31 te(gini_index,gdp_per_capita).17 -1.137124580e-1
#> 32 te(gini_index,gdp_per_capita).18 1.304143526e-1
#> 33 te(gini_index,gdp_per_capita).19 8.148116778e-1
#> 34 te(gini_index,gdp_per_capita).20 1.411292007e+0
#> 35 te(gini_index,gdp_per_capita).21 4.062122650e-1
#> 36 te(gini_index,gdp_per_capita).22 3.088600283e-1
#> 37 te(gini_index,gdp_per_capita).23 2.657326108e-1
#> 38 te(gini_index,gdp_per_capita).24 5.872530055e+0
#> 39 s(year).1 3.876290981e-2
#> 40 s(year).2 2.435364594e-1
#> 41 s(year).3 8.466948749e-2
#> 42 s(year).4 -2.676278059e-1
#> 43 s(year).5 1.340548702e-2
#> 44 s(year).6 -1.089147625e-1
#> 45 s(year).7 -5.597837739e-2
#> 46 s(year).8 3.683312757e-1
#> 47 s(year).9 1.829326342e-3
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.588613525e-24 0.8429077979 5.455094612e-1 0.8634520043
#> 2 observed 2.588613525e-24 0.5887756362 2.082456215e-1 0.3929841856
#> 3 estimate 2.588613525e-24 0.6993780697 5.125519725e-3 0.6055875044
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(63.296)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.946427538 0.007369905 -264.1048 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.908340 2.425916 12.51950 0.0033401 **
#> te(gini_index,gdp_per_capita) 13.208793 15.303787 519.83714 < 2.22e-16 ***
#> s(year) 1.906688 2.364433 26.37975 0.0000053133 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.214 Deviance explained = 19.9%
#> -REML = -4540.2 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0.2138962997 moderate cohen1988
#> 2 SE 0.01378325948 <NA> <NA>
#> 3 Lower CI 0.1868816076 moderate cohen1988
#> 4 Upper CI 0.2409109919 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.802382111e+1
#> 2 logLik 4.578106537e+3
#> 3 AIC -9.112024802e+3
#> 4 BIC -8.983014231e+3
#> 5 deviance 2.487063320e+3
#> 6 df.residual 2.519976179e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 2.138962997e-1
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -4.604052641e-2
#> 2 mean((Intercept)) -1.946427538e+0
#> 3 mean(s(spei_12m)) -2.576807723e-3
#> 4 mean(te(gini_index,gdp_per_capita)) -4.000657833e-3
#> 5 mean(s(year)) 9.543551071e-3
#> 6 s(spei_12m).1 -2.368282578e-3
#> 7 s(spei_12m).2 -5.634512832e-3
#> 8 s(spei_12m).3 6.988812705e-4
#> 9 s(spei_12m).4 6.170941935e-3
#> 10 s(spei_12m).5 3.900312974e-4
#> 11 s(spei_12m).6 -6.029587610e-3
#> 12 s(spei_12m).7 -1.571460422e-3
#> 13 s(spei_12m).8 -3.923842977e-2
#> 14 s(spei_12m).9 2.439114920e-2
#> 15 te(gini_index,gdp_per_capita).1 -9.683253627e-2
#> 16 te(gini_index,gdp_per_capita).2 -3.044781733e-1
#> 17 te(gini_index,gdp_per_capita).3 -4.163146680e-1
#> 18 te(gini_index,gdp_per_capita).4 -6.992371964e-1
#> 19 te(gini_index,gdp_per_capita).5 5.229948279e-1
#> 20 te(gini_index,gdp_per_capita).6 -2.188459753e-1
#> 21 te(gini_index,gdp_per_capita).7 9.183594113e-2
#> 22 te(gini_index,gdp_per_capita).8 -5.001300185e-1
#> 23 te(gini_index,gdp_per_capita).9 -3.954983251e-1
#> 24 te(gini_index,gdp_per_capita).10 5.203885193e-1
#> 25 te(gini_index,gdp_per_capita).11 1.344961570e-2
#> 26 te(gini_index,gdp_per_capita).12 4.792473315e-2
#> 27 te(gini_index,gdp_per_capita).13 -2.005074037e-1
#> 28 te(gini_index,gdp_per_capita).14 -3.082968664e-1
#> 29 te(gini_index,gdp_per_capita).15 4.903474873e-1
#> 30 te(gini_index,gdp_per_capita).16 -4.429321504e-2
#> 31 te(gini_index,gdp_per_capita).17 1.797032356e-1
#> 32 te(gini_index,gdp_per_capita).18 -3.588369311e-1
#> 33 te(gini_index,gdp_per_capita).19 -2.024498744e-1
#> 34 te(gini_index,gdp_per_capita).20 1.773497104e-1
#> 35 te(gini_index,gdp_per_capita).21 3.688559152e-1
#> 36 te(gini_index,gdp_per_capita).22 4.984976516e-1
#> 37 te(gini_index,gdp_per_capita).23 4.320868889e-1
#> 38 te(gini_index,gdp_per_capita).24 3.062708692e-1
#> 39 s(year).1 -3.435306517e-3
#> 40 s(year).2 1.216227305e-2
#> 41 s(year).3 5.781565989e-3
#> 42 s(year).4 -1.144599549e-2
#> 43 s(year).5 -7.508389447e-4
#> 44 s(year).6 -8.436012783e-3
#> 45 s(year).7 -3.745548593e-3
#> 46 s(year).8 4.141303093e-2
#> 47 s(year).9 5.434879201e-2
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.623684980e-25 0.5766265013 4.569162593e-1 0.6028488674
#> 2 observed 2.623684980e-25 0.5137525829 2.610550504e-1 0.4879333548
#> 3 estimate 2.623684980e-25 0.4331896267 9.220398167e-3 0.3812821727
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = beipr_gam_1_by_misfs,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_1_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mbepr_beipr_gam_1_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(mbepr_beipr_gam_1_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(19.849)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.948019115 0.007292566 -267.124 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.002341 1.004554 11.73303 0.00062523 ***
#> te(gini_index,gdp_per_capita) 18.132368 19.564406 1031.84529 < 2.22e-16 ***
#> s(year) 7.005929 8.093057 192.96440 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.124 Deviance explained = 12.8%
#> -REML = -9508.9 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.235231245e-1 weak cohen1988
#> 2 SE 6.911027599e-3 <NA> <NA>
#> 3 Lower CI 1.099777593e-1 weak cohen1988
#> 4 Upper CI 1.370684897e-1 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.714063749e+1
#> 2 logLik 9.577519789e+3
#> 3 AIC -1.909543360e+4
#> 4 BIC -1.889004187e+4
#> 5 deviance 7.117722469e+3
#> 6 df.residual 7.243859363e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared 1.235231245e-1
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.376117260e-1
#> 2 mean((Intercept)) -1.948019115e+0
#> 3 mean(s(spei_12m)) 3.819266254e-3
#> 4 mean(te(gini_index,gdp_per_capita)) -2.005067416e-1
#> 5 mean(s(year)) 8.983369973e-2
#> 6 s(spei_12m).1 -1.587831592e-5
#> 7 s(spei_12m).2 -9.400098777e-6
#> 8 s(spei_12m).3 9.320549049e-9
#> 9 s(spei_12m).4 -4.821942432e-6
#> 10 s(spei_12m).5 -1.811981298e-6
#> 11 s(spei_12m).6 4.512640529e-6
#> 12 s(spei_12m).7 -1.756965780e-6
#> 13 s(spei_12m).8 2.684411451e-5
#> 14 s(spei_12m).9 3.437569951e-2
#> 15 te(gini_index,gdp_per_capita).1 -6.569709666e-1
#> 16 te(gini_index,gdp_per_capita).2 -4.267331245e-1
#> 17 te(gini_index,gdp_per_capita).3 -3.285710455e-1
#> 18 te(gini_index,gdp_per_capita).4 5.464941835e-1
#> 19 te(gini_index,gdp_per_capita).5 4.717545702e-1
#> 20 te(gini_index,gdp_per_capita).6 6.038846395e-2
#> 21 te(gini_index,gdp_per_capita).7 -3.274578477e-1
#> 22 te(gini_index,gdp_per_capita).8 1.059195411e-1
#> 23 te(gini_index,gdp_per_capita).9 -8.601145803e-1
#> 24 te(gini_index,gdp_per_capita).10 6.539660151e-1
#> 25 te(gini_index,gdp_per_capita).11 8.265299238e-2
#> 26 te(gini_index,gdp_per_capita).12 -9.478068587e-2
#> 27 te(gini_index,gdp_per_capita).13 4.542215944e-2
#> 28 te(gini_index,gdp_per_capita).14 -1.410487054e+0
#> 29 te(gini_index,gdp_per_capita).15 7.757268832e-1
#> 30 te(gini_index,gdp_per_capita).16 2.249979608e-1
#> 31 te(gini_index,gdp_per_capita).17 -4.000670323e-2
#> 32 te(gini_index,gdp_per_capita).18 1.267188973e-1
#> 33 te(gini_index,gdp_per_capita).19 -2.004268820e+0
#> 34 te(gini_index,gdp_per_capita).20 8.149033231e-1
#> 35 te(gini_index,gdp_per_capita).21 1.389859118e+0
#> 36 te(gini_index,gdp_per_capita).22 5.069730135e-1
#> 37 te(gini_index,gdp_per_capita).23 5.556465986e-1
#> 38 te(gini_index,gdp_per_capita).24 -5.024194690e+0
#> 39 s(year).1 -5.935820286e-2
#> 40 s(year).2 1.770704168e-1
#> 41 s(year).3 2.764977403e-1
#> 42 s(year).4 -2.880315898e-1
#> 43 s(year).5 -3.643438236e-2
#> 44 s(year).6 -8.877703754e-2
#> 45 s(year).7 -6.895861894e-2
#> 46 s(year).8 4.862502525e-1
#> 47 s(year).9 4.102447195e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 1.223297314e-24 0.5789015684 0.3501118687 0.6460694532
#> 2 observed 1.223297314e-24 0.5448354296 0.1025414746 0.5132527970
#> 3 estimate 1.223297314e-24 0.4778441467 0.01041126877 0.4377095149
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.216)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.223605752 0.004067372 -546.6935 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.637657 5.750613 21.24853 0.0011738 **
#> te(gini_index,gdp_per_capita) 18.138657 19.133616 2207.35823 < 2.22e-16 ***
#> s(year) 7.998733 8.723812 269.32358 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00449 Deviance explained = 9.12%
#> -REML = -41937 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.177504656e+1
#> 2 logLik 4.201864534e+4
#> 3 AIC -8.396693824e+4
#> 4 BIC -8.367579869e+4
#> 5 deviance 2.914613611e+4
#> 6 df.residual 2.901322495e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -4.488600260e-3
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.035854778e-1
#> 2 mean((Intercept)) -2.223605752e+0
#> 3 mean(s(spei_12m)) 2.123242764e-2
#> 4 mean(te(gini_index,gdp_per_capita)) -1.398313814e-1
#> 5 mean(s(year)) 1.038101679e-1
#> 6 s(spei_12m).1 6.278961842e-2
#> 7 s(spei_12m).2 2.009333139e-2
#> 8 s(spei_12m).3 3.103190741e-2
#> 9 s(spei_12m).4 1.389449803e-2
#> 10 s(spei_12m).5 -2.678880003e-3
#> 11 s(spei_12m).6 7.186140787e-3
#> 12 s(spei_12m).7 -3.650182204e-3
#> 13 s(spei_12m).8 -2.110146034e-2
#> 14 s(spei_12m).9 8.352687523e-2
#> 15 te(gini_index,gdp_per_capita).1 -1.230572935e+0
#> 16 te(gini_index,gdp_per_capita).2 -1.379133552e+0
#> 17 te(gini_index,gdp_per_capita).3 -1.450873826e+0
#> 18 te(gini_index,gdp_per_capita).4 1.591111913e+1
#> 19 te(gini_index,gdp_per_capita).5 3.163406494e-1
#> 20 te(gini_index,gdp_per_capita).6 2.311430786e-1
#> 21 te(gini_index,gdp_per_capita).7 -3.351546983e-1
#> 22 te(gini_index,gdp_per_capita).8 3.066535895e-1
#> 23 te(gini_index,gdp_per_capita).9 5.313250562e+0
#> 24 te(gini_index,gdp_per_capita).10 4.597351415e-1
#> 25 te(gini_index,gdp_per_capita).11 1.902323942e-1
#> 26 te(gini_index,gdp_per_capita).12 -7.484347863e-2
#> 27 te(gini_index,gdp_per_capita).13 1.613642433e-1
#> 28 te(gini_index,gdp_per_capita).14 1.629569783e+0
#> 29 te(gini_index,gdp_per_capita).15 5.292435514e-1
#> 30 te(gini_index,gdp_per_capita).16 4.998812437e-1
#> 31 te(gini_index,gdp_per_capita).17 -2.717340794e-1
#> 32 te(gini_index,gdp_per_capita).18 6.500642764e-1
#> 33 te(gini_index,gdp_per_capita).19 -1.977261064e+0
#> 34 te(gini_index,gdp_per_capita).20 3.806509233e-1
#> 35 te(gini_index,gdp_per_capita).21 -4.341628596e-1
#> 36 te(gini_index,gdp_per_capita).22 -7.984247584e-1
#> 37 te(gini_index,gdp_per_capita).23 -6.951157545e-1
#> 38 te(gini_index,gdp_per_capita).24 -2.128792472e+1
#> 39 s(year).1 -3.697655389e-2
#> 40 s(year).2 4.324823779e-1
#> 41 s(year).3 2.472082630e-1
#> 42 s(year).4 -4.099118180e-1
#> 43 s(year).5 -3.635123227e-2
#> 44 s(year).6 -1.600234742e-1
#> 45 s(year).7 -1.196235426e-1
#> 46 s(year).8 7.756442682e-1
#> 47 s(year).9 2.418432226e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.135124790e-24 0.4386344126 2.754406321e-1 0.5079354649
#> 2 observed 3.135124790e-24 0.1703375569 6.457010156e-2 0.2375150213
#> 3 estimate 3.135124790e-24 0.3128056866 3.775205272e-3 0.3758159024
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(36.367)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.793438705 0.003338323 -537.2274 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.408676 8.904907 75.39502 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 16.063581 17.512736 1742.29725 < 2.22e-16 ***
#> s(year) 7.255911 8.216346 59.16464 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.126 Deviance explained = 12.1%
#> -REML = -27627 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.262385438e-1 weak cohen1988
#> 2 SE 4.353869100e-3 <NA> <NA>
#> 3 Lower CI 1.177051172e-1 weak cohen1988
#> 4 Upper CI 1.347719704e-1 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.272816732e+1
#> 2 logLik 2.771028642e+4
#> 3 AIC -5.534730486e+4
#> 4 BIC -5.506036220e+4
#> 5 deviance 1.819626584e+4
#> 6 df.residual 1.860027183e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 1.262385438e-1
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 9.911940488e-2
#> 2 mean((Intercept)) -1.793438705e+0
#> 3 mean(s(spei_12m)) -3.523016344e-2
#> 4 mean(te(gini_index,gdp_per_capita)) 2.520636773e-1
#> 5 mean(s(year)) 3.590181443e-2
#> 6 s(spei_12m).1 -8.888268730e-2
#> 7 s(spei_12m).2 -1.215849864e-1
#> 8 s(spei_12m).3 5.194930962e-2
#> 9 s(spei_12m).4 -1.405384256e-1
#> 10 s(spei_12m).5 6.781570315e-2
#> 11 s(spei_12m).6 -1.055392065e-1
#> 12 s(spei_12m).7 1.376034130e-1
#> 13 s(spei_12m).8 -3.811061576e-1
#> 14 s(spei_12m).9 2.632115665e-1
#> 15 te(gini_index,gdp_per_capita).1 -5.160643363e-1
#> 16 te(gini_index,gdp_per_capita).2 -5.095459179e-1
#> 17 te(gini_index,gdp_per_capita).3 -4.534548007e-1
#> 18 te(gini_index,gdp_per_capita).4 -5.635777123e+0
#> 19 te(gini_index,gdp_per_capita).5 2.246007962e-1
#> 20 te(gini_index,gdp_per_capita).6 5.266116512e-2
#> 21 te(gini_index,gdp_per_capita).7 -2.595779376e-1
#> 22 te(gini_index,gdp_per_capita).8 9.925880276e-2
#> 23 te(gini_index,gdp_per_capita).9 -1.168402337e+0
#> 24 te(gini_index,gdp_per_capita).10 4.692634152e-1
#> 25 te(gini_index,gdp_per_capita).11 6.063388407e-2
#> 26 te(gini_index,gdp_per_capita).12 -5.703275337e-2
#> 27 te(gini_index,gdp_per_capita).13 -4.679771186e-2
#> 28 te(gini_index,gdp_per_capita).14 1.454141902e-1
#> 29 te(gini_index,gdp_per_capita).15 7.488469455e-1
#> 30 te(gini_index,gdp_per_capita).16 3.525026668e-1
#> 31 te(gini_index,gdp_per_capita).17 -2.882742821e-1
#> 32 te(gini_index,gdp_per_capita).18 3.431737006e-1
#> 33 te(gini_index,gdp_per_capita).19 1.526916843e+0
#> 34 te(gini_index,gdp_per_capita).20 9.109629467e-1
#> 35 te(gini_index,gdp_per_capita).21 3.069321153e-1
#> 36 te(gini_index,gdp_per_capita).22 1.786429287e-1
#> 37 te(gini_index,gdp_per_capita).23 1.458643486e-1
#> 38 te(gini_index,gdp_per_capita).24 9.418780707e+0
#> 39 s(year).1 -2.785571495e-2
#> 40 s(year).2 2.062221918e-1
#> 41 s(year).3 8.898905811e-2
#> 42 s(year).4 -2.007470754e-1
#> 43 s(year).5 -4.714728035e-3
#> 44 s(year).6 -3.966754071e-2
#> 45 s(year).7 -4.199243911e-2
#> 46 s(year).8 2.571765121e-1
#> 47 s(year).9 8.570606595e-2
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.588613525e-24 0.8429077979 5.455094612e-1 0.8634520043
#> 2 observed 2.588613525e-24 0.3613046975 1.839068275e-1 0.3114776112
#> 3 estimate 2.588613525e-24 0.6993780697 5.125519725e-3 0.6055875044
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(28.2)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.279842661 0.008794771 -145.5231 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.004703 1.009384 8.30785 0.0040638 **
#> te(gini_index,gdp_per_capita) 12.935723 15.043027 396.02178 < 2.22e-16 ***
#> s(year) 1.000246 1.000487 2.02571 0.1547300
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.185 Deviance explained = 18.3%
#> -REML = -2975.4 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0.1853289242 moderate cohen1988
#> 2 SE 0.01329610253 <NA> <NA>
#> 3 Lower CI 0.1592690421 moderate cohen1988
#> 4 Upper CI 0.2113888063 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.594067162e+1
#> 2 logLik 3.009104818e+3
#> 3 AIC -5.980103839e+3
#> 4 BIC -5.868851459e+3
#> 5 deviance 2.463678218e+3
#> 6 df.residual 2.522059328e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 1.853289242e-1
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.662573927e-2
#> 2 mean((Intercept)) -1.279842661e+0
#> 3 mean(s(spei_12m)) 3.048535060e-3
#> 4 mean(te(gini_index,gdp_per_capita)) -1.411518492e-2
#> 5 mean(s(year)) 1.807054940e-3
#> 6 s(spei_12m).1 -4.355582273e-5
#> 7 s(spei_12m).2 1.886091367e-5
#> 8 s(spei_12m).3 7.778223208e-8
#> 9 s(spei_12m).4 -7.441748188e-7
#> 10 s(spei_12m).5 -2.842127913e-6
#> 11 s(spei_12m).6 2.937438139e-6
#> 12 s(spei_12m).7 -6.805138289e-8
#> 13 s(spei_12m).8 2.018136462e-5
#> 14 s(spei_12m).9 2.744196822e-2
#> 15 te(gini_index,gdp_per_capita).1 -2.840514046e-2
#> 16 te(gini_index,gdp_per_capita).2 -2.174218746e-1
#> 17 te(gini_index,gdp_per_capita).3 -3.177964694e-1
#> 18 te(gini_index,gdp_per_capita).4 -1.320577084e+0
#> 19 te(gini_index,gdp_per_capita).5 5.982547230e-1
#> 20 te(gini_index,gdp_per_capita).6 -2.463540645e-1
#> 21 te(gini_index,gdp_per_capita).7 1.298208718e-1
#> 22 te(gini_index,gdp_per_capita).8 -5.342403096e-1
#> 23 te(gini_index,gdp_per_capita).9 -6.698742413e-1
#> 24 te(gini_index,gdp_per_capita).10 5.884451499e-1
#> 25 te(gini_index,gdp_per_capita).11 -1.116469343e-3
#> 26 te(gini_index,gdp_per_capita).12 5.715727940e-2
#> 27 te(gini_index,gdp_per_capita).13 -2.194274060e-1
#> 28 te(gini_index,gdp_per_capita).14 -4.836138399e-1
#> 29 te(gini_index,gdp_per_capita).15 5.502704591e-1
#> 30 te(gini_index,gdp_per_capita).16 -7.125048146e-2
#> 31 te(gini_index,gdp_per_capita).17 1.855582898e-1
#> 32 te(gini_index,gdp_per_capita).18 -4.234903363e-1
#> 33 te(gini_index,gdp_per_capita).19 -2.584437512e-1
#> 34 te(gini_index,gdp_per_capita).20 2.795159674e-1
#> 35 te(gini_index,gdp_per_capita).21 4.369126890e-1
#> 36 te(gini_index,gdp_per_capita).22 4.763431184e-1
#> 37 te(gini_index,gdp_per_capita).23 3.251154545e-1
#> 38 te(gini_index,gdp_per_capita).24 8.258530281e-1
#> 39 s(year).1 1.849893262e-7
#> 40 s(year).2 5.257510947e-7
#> 41 s(year).3 5.857977929e-7
#> 42 s(year).4 -9.823195042e-7
#> 43 s(year).5 -4.945974710e-8
#> 44 s(year).6 -5.686636189e-7
#> 45 s(year).7 -2.727741639e-7
#> 46 s(year).8 3.125081698e-6
#> 47 s(year).9 1.626094606e-2
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.623684980e-25 0.5766265013 4.569162593e-1 0.6028488674
#> 2 observed 2.623684980e-25 0.5542435938 2.932390599e-1 0.4342740714
#> 3 estimate 2.623684980e-25 0.4331896267 9.220398167e-3 0.3812821727
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_beipr_gam_1_by_misfs,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_1_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_gam_1_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(maper_gam_1_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.331)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.55288509 0.01012424 -350.9287 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 3.935290 4.942821 13.94393 0.015463 *
#> te(gini_index,gdp_per_capita) 12.596538 14.436040 370.21269 < 2e-16 ***
#> s(year) 5.572157 6.717918 64.47033 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.026 Deviance explained = 6.33%
#> -REML = -19239 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.310398463e+1
#> 2 logLik 1.928203250e+4
#> 3 AIC -3.850787145e+4
#> 4 BIC -3.831423830e+4
#> 5 deviance 7.678044863e+3
#> 6 df.residual 7.247896015e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared -2.596516369e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -5.385801842e-2
#> 2 mean((Intercept)) -3.552885086e+0
#> 3 mean(s(spei_12m)) 2.724956363e-2
#> 4 mean(te(gini_index,gdp_per_capita)) 2.273374021e-2
#> 5 mean(s(year)) 4.957049509e-2
#> 6 s(spei_12m).1 1.465416610e-1
#> 7 s(spei_12m).2 -3.262614626e-2
#> 8 s(spei_12m).3 3.492795755e-4
#> 9 s(spei_12m).4 -1.006696279e-2
#> 10 s(spei_12m).5 -1.298300153e-2
#> 11 s(spei_12m).6 9.954900005e-3
#> 12 s(spei_12m).7 -7.752080973e-3
#> 13 s(spei_12m).8 2.224120375e-2
#> 14 s(spei_12m).9 1.295872199e-1
#> 15 te(gini_index,gdp_per_capita).1 -6.523489894e-1
#> 16 te(gini_index,gdp_per_capita).2 -6.707459210e-1
#> 17 te(gini_index,gdp_per_capita).3 -5.880377644e-1
#> 18 te(gini_index,gdp_per_capita).4 -3.490001453e+0
#> 19 te(gini_index,gdp_per_capita).5 -2.075630741e-2
#> 20 te(gini_index,gdp_per_capita).6 1.618283682e-1
#> 21 te(gini_index,gdp_per_capita).7 -4.261295054e-1
#> 22 te(gini_index,gdp_per_capita).8 2.923171018e-1
#> 23 te(gini_index,gdp_per_capita).9 -1.009264081e+0
#> 24 te(gini_index,gdp_per_capita).10 1.853386228e-1
#> 25 te(gini_index,gdp_per_capita).11 1.728711791e-1
#> 26 te(gini_index,gdp_per_capita).12 -6.223170028e-2
#> 27 te(gini_index,gdp_per_capita).13 1.425325379e-1
#> 28 te(gini_index,gdp_per_capita).14 -1.316434506e-1
#> 29 te(gini_index,gdp_per_capita).15 3.865900208e-1
#> 30 te(gini_index,gdp_per_capita).16 4.675993543e-1
#> 31 te(gini_index,gdp_per_capita).17 7.552980316e-2
#> 32 te(gini_index,gdp_per_capita).18 3.493289325e-1
#> 33 te(gini_index,gdp_per_capita).19 7.384585697e-1
#> 34 te(gini_index,gdp_per_capita).20 2.714799595e-1
#> 35 te(gini_index,gdp_per_capita).21 7.540891408e-2
#> 36 te(gini_index,gdp_per_capita).22 -8.032263268e-2
#> 37 te(gini_index,gdp_per_capita).23 -3.006670252e-1
#> 38 te(gini_index,gdp_per_capita).24 4.658475231e+0
#> 39 s(year).1 1.144002984e-1
#> 40 s(year).2 2.511874407e-1
#> 41 s(year).3 -2.629578155e-2
#> 42 s(year).4 -1.314721285e-1
#> 43 s(year).5 -1.419898110e-2
#> 44 s(year).6 -3.733642672e-2
#> 45 s(year).7 -4.225014979e-2
#> 46 s(year).8 4.264659570e-1
#> 47 s(year).9 -9.436577258e-2
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 1.223297314e-24 0.5789015684 0.3501118687 0.6460694532
#> 2 observed 1.223297314e-24 0.4780818944 0.04309403980 0.3274556400
#> 3 estimate 1.223297314e-24 0.4778441467 0.01041126877 0.4377095149
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(26.39)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -4.002587756 0.005374656 -744.7151 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.158966 8.815429 237.7016 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.926377 20.021046 2654.5254 < 2.22e-16 ***
#> s(year) 8.400126 8.897307 455.0652 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.00405 Deviance explained = 10.4%
#> -REML = -97328 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.048976035e-3 very weak (negligible) cohen1988
#> 2 SE 7.113596263e-4 <NA> <NA>
#> 3 Lower CI 2.654736788e-3 very weak (negligible) cohen1988
#> 4 Upper CI 5.443215283e-3 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.648546850e+1
#> 2 logLik 9.742804791e+4
#> 3 AIC -1.947766282e+5
#> 4 BIC -1.944477676e+5
#> 5 deviance 3.094050710e+4
#> 6 df.residual 2.900851453e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared 4.048976035e-3
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.759630004e-2
#> 2 mean((Intercept)) -4.002587756e+0
#> 3 mean(s(spei_12m)) -1.617038651e-2
#> 4 mean(te(gini_index,gdp_per_capita)) 7.025638200e-2
#> 5 mean(s(year)) 1.417030184e-1
#> 6 s(spei_12m).1 1.602153684e-1
#> 7 s(spei_12m).2 -2.150415784e-1
#> 8 s(spei_12m).3 1.057391972e-1
#> 9 s(spei_12m).4 2.902608366e-1
#> 10 s(spei_12m).5 -9.938962065e-2
#> 11 s(spei_12m).6 3.181440002e-1
#> 12 s(spei_12m).7 -1.240757369e-1
#> 13 s(spei_12m).8 -7.254756859e-1
#> 14 s(spei_12m).9 1.440897409e-1
#> 15 te(gini_index,gdp_per_capita).1 -7.968017473e-1
#> 16 te(gini_index,gdp_per_capita).2 -9.506594327e-1
#> 17 te(gini_index,gdp_per_capita).3 -1.019514327e+0
#> 18 te(gini_index,gdp_per_capita).4 3.696196342e-1
#> 19 te(gini_index,gdp_per_capita).5 4.626822252e-1
#> 20 te(gini_index,gdp_per_capita).6 1.977011769e-2
#> 21 te(gini_index,gdp_per_capita).7 -4.079866436e-1
#> 22 te(gini_index,gdp_per_capita).8 -4.989737198e-2
#> 23 te(gini_index,gdp_per_capita).9 5.862561630e-1
#> 24 te(gini_index,gdp_per_capita).10 7.802731389e-1
#> 25 te(gini_index,gdp_per_capita).11 2.194402721e-1
#> 26 te(gini_index,gdp_per_capita).12 -5.042148103e-2
#> 27 te(gini_index,gdp_per_capita).13 5.729298557e-2
#> 28 te(gini_index,gdp_per_capita).14 6.603980123e-1
#> 29 te(gini_index,gdp_per_capita).15 9.071102678e-1
#> 30 te(gini_index,gdp_per_capita).16 4.201590770e-1
#> 31 te(gini_index,gdp_per_capita).17 -6.366230342e-2
#> 32 te(gini_index,gdp_per_capita).18 4.506686049e-1
#> 33 te(gini_index,gdp_per_capita).19 7.390493780e-1
#> 34 te(gini_index,gdp_per_capita).20 5.826485196e-1
#> 35 te(gini_index,gdp_per_capita).21 4.933676007e-1
#> 36 te(gini_index,gdp_per_capita).22 -1.269372676e+0
#> 37 te(gini_index,gdp_per_capita).23 -1.680177264e+0
#> 38 te(gini_index,gdp_per_capita).24 1.225910417e+0
#> 39 s(year).1 8.815467536e-2
#> 40 s(year).2 5.810144139e-1
#> 41 s(year).3 2.475641704e-1
#> 42 s(year).4 -4.430197384e-1
#> 43 s(year).5 -1.038036786e-1
#> 44 s(year).6 -8.975007679e-2
#> 45 s(year).7 -1.500900234e-1
#> 46 s(year).8 9.269111669e-1
#> 47 s(year).9 2.183462562e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.135124790e-24 0.4386344126 2.754406321e-1 0.5079354649
#> 2 observed 3.135124790e-24 0.2509682026 1.000080335e-1 0.1762272543
#> 3 estimate 3.135124790e-24 0.3128056866 3.775205272e-3 0.3758159024
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(55.92)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.424950107 0.004878501 -702.0496 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.071994 8.161876 72.44836 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 13.992950 15.401318 697.98748 < 2.22e-16 ***
#> s(year) 8.502523 8.919956 155.12494 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0205 Deviance explained = 5.83%
#> -REML = -47472 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.049581866e-2 weak cohen1988
#> 2 SE 1.966642526e-3 <NA> <NA>
#> 3 Lower CI 1.664127014e-2 very weak (negligible) cohen1988
#> 4 Upper CI 2.435036718e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.056746739e+1
#> 2 logLik 4.754397690e+4
#> 3 AIC -9.501913626e+4
#> 4 BIC -9.474962308e+4
#> 5 deviance 1.836938076e+4
#> 6 df.residual 1.860243253e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 2.049581866e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.305462845e-2
#> 2 mean((Intercept)) -3.424950107e+0
#> 3 mean(s(spei_12m)) -2.121485471e-2
#> 4 mean(te(gini_index,gdp_per_capita)) 9.923490785e-2
#> 5 mean(s(year)) 7.476633198e-2
#> 6 s(spei_12m).1 -4.606670472e-2
#> 7 s(spei_12m).2 -1.112536761e-1
#> 8 s(spei_12m).3 1.134817730e-1
#> 9 s(spei_12m).4 -1.096050018e-1
#> 10 s(spei_12m).5 8.237803365e-2
#> 11 s(spei_12m).6 -7.571138963e-2
#> 12 s(spei_12m).7 1.113778717e-2
#> 13 s(spei_12m).8 -2.164959340e-1
#> 14 s(spei_12m).9 1.612014200e-1
#> 15 te(gini_index,gdp_per_capita).1 -6.732808455e-1
#> 16 te(gini_index,gdp_per_capita).2 -7.973604765e-1
#> 17 te(gini_index,gdp_per_capita).3 -8.839870885e-1
#> 18 te(gini_index,gdp_per_capita).4 -6.952233113e+0
#> 19 te(gini_index,gdp_per_capita).5 2.732547296e-2
#> 20 te(gini_index,gdp_per_capita).6 -8.052823754e-3
#> 21 te(gini_index,gdp_per_capita).7 -1.814026439e-1
#> 22 te(gini_index,gdp_per_capita).8 2.016543295e-2
#> 23 te(gini_index,gdp_per_capita).9 -1.724954783e+0
#> 24 te(gini_index,gdp_per_capita).10 1.332584945e-1
#> 25 te(gini_index,gdp_per_capita).11 4.897262568e-2
#> 26 te(gini_index,gdp_per_capita).12 -3.714174022e-3
#> 27 te(gini_index,gdp_per_capita).13 9.318843989e-3
#> 28 te(gini_index,gdp_per_capita).14 -1.735197632e-1
#> 29 te(gini_index,gdp_per_capita).15 3.417370434e-1
#> 30 te(gini_index,gdp_per_capita).16 2.381986671e-1
#> 31 te(gini_index,gdp_per_capita).17 -9.677459556e-2
#> 32 te(gini_index,gdp_per_capita).18 2.478145398e-1
#> 33 te(gini_index,gdp_per_capita).19 1.474327965e+0
#> 34 te(gini_index,gdp_per_capita).20 1.902234958e-1
#> 35 te(gini_index,gdp_per_capita).21 1.167606755e-1
#> 36 te(gini_index,gdp_per_capita).22 8.368601026e-2
#> 37 te(gini_index,gdp_per_capita).23 7.508561333e-2
#> 38 te(gini_index,gdp_per_capita).24 1.087004322e+1
#> 39 s(year).1 -1.072815011e-1
#> 40 s(year).2 1.297478496e-1
#> 41 s(year).3 1.902441154e-1
#> 42 s(year).4 4.359535865e-2
#> 43 s(year).5 -6.770645375e-2
#> 44 s(year).6 1.538523825e-1
#> 45 s(year).7 -8.418181747e-2
#> 46 s(year).8 1.183746060e-1
#> 47 s(year).9 2.962524479e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.588613525e-24 0.8429077979 5.455094612e-1 0.8634520043
#> 2 observed 2.588613525e-24 0.3880419084 4.863478901e-2 0.3826809325
#> 3 estimate 2.588613525e-24 0.6993780697 5.125519725e-3 0.6055875044
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(90.919)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.53300850 0.01139888 -309.9435 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.005297 1.010478 0.78044 0.37956
#> te(gini_index,gdp_per_capita) 6.180631 7.567595 39.20539 < 2.22e-16 ***
#> s(year) 4.108788 5.079213 35.04306 0.000002407 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0287 Deviance explained = 4.07%
#> -REML = -7015.5 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.872079947e-2 weak cohen1988
#> 2 SE 6.240405439e-3 <NA> <NA>
#> 3 Lower CI 1.648982956e-2 very weak (negligible) cohen1988
#> 4 Upper CI 4.095176938e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.229471570e+1
#> 2 logLik 7.034668134e+3
#> 3 AIC -1.403802170e+4
#> 4 BIC -1.394659674e+4
#> 5 deviance 2.476972895e+3
#> 6 df.residual 2.525705284e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 2.872079947e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.276367938e-1
#> 2 mean((Intercept)) -3.533008501e+0
#> 3 mean(s(spei_12m)) 1.374879678e-3
#> 4 mean(te(gini_index,gdp_per_capita)) -8.617100741e-2
#> 5 mean(s(year)) 1.115073628e-2
#> 6 s(spei_12m).1 -3.145806884e-5
#> 7 s(spei_12m).2 4.633062204e-5
#> 8 s(spei_12m).3 -3.654155965e-6
#> 9 s(spei_12m).4 -1.162309670e-5
#> 10 s(spei_12m).5 -2.376389028e-6
#> 11 s(spei_12m).6 1.132745122e-5
#> 12 s(spei_12m).7 2.804223265e-6
#> 13 s(spei_12m).8 5.967523265e-5
#> 14 s(spei_12m).9 1.230289128e-2
#> 15 te(gini_index,gdp_per_capita).1 1.448774783e-1
#> 16 te(gini_index,gdp_per_capita).2 1.381523082e-1
#> 17 te(gini_index,gdp_per_capita).3 1.104115274e-1
#> 18 te(gini_index,gdp_per_capita).4 -2.168743966e+0
#> 19 te(gini_index,gdp_per_capita).5 7.694422258e-2
#> 20 te(gini_index,gdp_per_capita).6 -8.035154504e-3
#> 21 te(gini_index,gdp_per_capita).7 1.014949818e-1
#> 22 te(gini_index,gdp_per_capita).8 -6.771413118e-2
#> 23 te(gini_index,gdp_per_capita).9 -8.865288219e-1
#> 24 te(gini_index,gdp_per_capita).10 7.628139033e-2
#> 25 te(gini_index,gdp_per_capita).11 2.941667306e-2
#> 26 te(gini_index,gdp_per_capita).12 5.961574591e-2
#> 27 te(gini_index,gdp_per_capita).13 -2.316509755e-2
#> 28 te(gini_index,gdp_per_capita).14 -5.192817271e-1
#> 29 te(gini_index,gdp_per_capita).15 4.559738409e-2
#> 30 te(gini_index,gdp_per_capita).16 -3.903062114e-2
#> 31 te(gini_index,gdp_per_capita).17 4.657312819e-2
#> 32 te(gini_index,gdp_per_capita).18 -1.103072443e-1
#> 33 te(gini_index,gdp_per_capita).19 -7.614307898e-2
#> 34 te(gini_index,gdp_per_capita).20 -3.165153030e-1
#> 35 te(gini_index,gdp_per_capita).21 -2.797249821e-1
#> 36 te(gini_index,gdp_per_capita).22 -2.521483913e-1
#> 37 te(gini_index,gdp_per_capita).23 -2.209909524e-1
#> 38 te(gini_index,gdp_per_capita).24 2.070860453e+0
#> 39 s(year).1 1.441873613e-1
#> 40 s(year).2 2.228013029e-2
#> 41 s(year).3 3.961430128e-2
#> 42 s(year).4 -4.162869985e-2
#> 43 s(year).5 -2.072792874e-2
#> 44 s(year).6 -1.809834768e-2
#> 45 s(year).7 -1.126349359e-2
#> 46 s(year).8 1.289964559e-1
#> 47 s(year).9 -1.430031523e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.623684980e-25 0.5766265013 4.569162593e-1 0.6028488674
#> 2 observed 2.623684980e-25 0.5542616189 5.715325984e-2 0.1773300761
#> 3 estimate 2.623684980e-25 0.4331896267 9.220398167e-3 0.3812821727
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_gam_1_by_misfs,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER"
)
maper_gam_1_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mpepr_gam_1_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(mpepr_gam_1_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(33.663)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.435592582 0.009212709 -372.9188 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.268564 5.347075 20.9017 0.0011836 **
#> te(gini_index,gdp_per_capita) 16.292307 17.984087 342.2626 < 2.22e-16 ***
#> s(year) 6.664815 7.798762 147.6848 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0407 Deviance explained = 7.53%
#> -REML = -18039 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.822568620e+1
#> 2 logLik 1.810385478e+4
#> 3 AIC -3.614144972e+4
#> 4 BIC -3.591312990e+4
#> 5 deviance 7.660095941e+3
#> 6 df.residual 7.242774314e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared -4.068121593e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.540426777e-1
#> 2 mean((Intercept)) -3.435592582e+0
#> 3 mean(s(spei_12m)) 1.965179815e-2
#> 4 mean(te(gini_index,gdp_per_capita)) -5.107707060e-1
#> 5 mean(s(year)) 3.259868896e-2
#> 6 s(spei_12m).1 1.442578959e-1
#> 7 s(spei_12m).2 1.156755619e-2
#> 8 s(spei_12m).3 4.754701909e-3
#> 9 s(spei_12m).4 6.337976598e-3
#> 10 s(spei_12m).5 -1.020097376e-2
#> 11 s(spei_12m).6 -1.454098915e-2
#> 12 s(spei_12m).7 8.166513251e-3
#> 13 s(spei_12m).8 -9.698957616e-2
#> 14 s(spei_12m).9 1.235130786e-1
#> 15 te(gini_index,gdp_per_capita).1 -8.556457864e-1
#> 16 te(gini_index,gdp_per_capita).2 -7.224516122e-1
#> 17 te(gini_index,gdp_per_capita).3 -2.827645944e-1
#> 18 te(gini_index,gdp_per_capita).4 -1.094567061e+1
#> 19 te(gini_index,gdp_per_capita).5 3.598357623e-1
#> 20 te(gini_index,gdp_per_capita).6 4.827606608e-1
#> 21 te(gini_index,gdp_per_capita).7 -5.899899923e-1
#> 22 te(gini_index,gdp_per_capita).8 5.504596430e-1
#> 23 te(gini_index,gdp_per_capita).9 5.524840940e-1
#> 24 te(gini_index,gdp_per_capita).10 2.844405483e-1
#> 25 te(gini_index,gdp_per_capita).11 2.045659083e-1
#> 26 te(gini_index,gdp_per_capita).12 -1.408739512e-1
#> 27 te(gini_index,gdp_per_capita).13 2.382674646e-1
#> 28 te(gini_index,gdp_per_capita).14 1.964827711e+0
#> 29 te(gini_index,gdp_per_capita).15 5.051195718e-1
#> 30 te(gini_index,gdp_per_capita).16 5.758265299e-1
#> 31 te(gini_index,gdp_per_capita).17 -8.435021101e-2
#> 32 te(gini_index,gdp_per_capita).18 4.331171232e-1
#> 33 te(gini_index,gdp_per_capita).19 1.727817001e+0
#> 34 te(gini_index,gdp_per_capita).20 1.397239247e-1
#> 35 te(gini_index,gdp_per_capita).21 2.023106661e-1
#> 36 te(gini_index,gdp_per_capita).22 1.850316980e-1
#> 37 te(gini_index,gdp_per_capita).23 1.673017311e-1
#> 38 te(gini_index,gdp_per_capita).24 -7.210640222e+0
#> 39 s(year).1 2.260332599e-1
#> 40 s(year).2 3.480525980e-1
#> 41 s(year).3 -1.769362763e-1
#> 42 s(year).4 -8.164849412e-2
#> 43 s(year).5 4.943527290e-2
#> 44 s(year).6 -7.393054959e-2
#> 45 s(year).7 -7.621420067e-2
#> 46 s(year).8 4.515143616e-1
#> 47 s(year).9 -3.729177710e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 1.223297314e-24 0.5789015684 0.3501118687 0.6460694532
#> 2 observed 1.223297314e-24 0.5011029296 0.1069083324 0.4559647681
#> 3 estimate 1.223297314e-24 0.4778441467 0.01041126877 0.4377095149
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(30.113)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.788460599 0.005088725 -744.4812 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.693886 8.973164 336.6217 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.413296 19.445870 3048.6243 < 2.22e-16 ***
#> s(year) 8.126491 8.793665 603.6286 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0107 Deviance explained = 12.5%
#> -REML = -85100 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.623367332e+1
#> 2 logLik 8.519764335e+4
#> 3 AIC -1.703168613e+5
#> 4 BIC -1.699923134e+5
#> 5 deviance 3.165534628e+4
#> 6 df.residual 2.900876633e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -1.065536510e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 2.614309967e-2
#> 2 mean((Intercept)) -3.788460599e+0
#> 3 mean(s(spei_12m)) -4.213820189e-2
#> 4 mean(te(gini_index,gdp_per_capita)) 1.590182328e-1
#> 5 mean(s(year)) 1.639355682e-1
#> 6 s(spei_12m).1 2.847027221e-1
#> 7 s(spei_12m).2 -5.242858975e-1
#> 8 s(spei_12m).3 2.552339559e-1
#> 9 s(spei_12m).4 5.033466544e-1
#> 10 s(spei_12m).5 -1.487123986e-1
#> 11 s(spei_12m).6 5.674860315e-1
#> 12 s(spei_12m).7 -3.050659231e-1
#> 13 s(spei_12m).8 -1.407882044e+0
#> 14 s(spei_12m).9 3.959330818e-1
#> 15 te(gini_index,gdp_per_capita).1 -1.111069076e+0
#> 16 te(gini_index,gdp_per_capita).2 -9.755193797e-1
#> 17 te(gini_index,gdp_per_capita).3 -9.383646574e-1
#> 18 te(gini_index,gdp_per_capita).4 -2.284407943e+0
#> 19 te(gini_index,gdp_per_capita).5 3.588983232e-1
#> 20 te(gini_index,gdp_per_capita).6 2.400235029e-1
#> 21 te(gini_index,gdp_per_capita).7 -5.773962914e-1
#> 22 te(gini_index,gdp_per_capita).8 2.258867873e-1
#> 23 te(gini_index,gdp_per_capita).9 -1.724633743e-1
#> 24 te(gini_index,gdp_per_capita).10 8.201945750e-1
#> 25 te(gini_index,gdp_per_capita).11 3.160445631e-1
#> 26 te(gini_index,gdp_per_capita).12 -6.636427586e-2
#> 27 te(gini_index,gdp_per_capita).13 2.216562372e-1
#> 28 te(gini_index,gdp_per_capita).14 5.604027066e-1
#> 29 te(gini_index,gdp_per_capita).15 9.563603306e-1
#> 30 te(gini_index,gdp_per_capita).16 6.379267936e-1
#> 31 te(gini_index,gdp_per_capita).17 -3.227620763e-1
#> 32 te(gini_index,gdp_per_capita).18 8.227631579e-1
#> 33 te(gini_index,gdp_per_capita).19 1.296138996e+0
#> 34 te(gini_index,gdp_per_capita).20 6.186414897e-1
#> 35 te(gini_index,gdp_per_capita).21 -2.197499782e-1
#> 36 te(gini_index,gdp_per_capita).22 -1.013159674e+0
#> 37 te(gini_index,gdp_per_capita).23 -1.061511936e+0
#> 38 te(gini_index,gdp_per_capita).24 5.484268788e+0
#> 39 s(year).1 1.298912378e-1
#> 40 s(year).2 7.920427295e-1
#> 41 s(year).3 1.715288087e-1
#> 42 s(year).4 -3.445560324e-1
#> 43 s(year).5 -8.500264034e-2
#> 44 s(year).6 -1.370209967e-1
#> 45 s(year).7 -1.172903492e-1
#> 46 s(year).8 9.263411627e-1
#> 47 s(year).9 1.394861936e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.135124790e-24 0.4386344126 2.754406321e-1 0.5079354649
#> 2 observed 3.135124790e-24 0.1945362126 8.944062476e-2 0.2661064049
#> 3 estimate 3.135124790e-24 0.3128056866 3.775205272e-3 0.3758159024
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(97.006)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.34517152 0.00381667 -876.4635 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 6.818805 7.961869 240.8820 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 16.136963 17.554865 909.7967 < 2.22e-16 ***
#> s(year) 8.546586 8.932752 215.8262 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0414 Deviance explained = 7.85%
#> -REML = -49903 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.142427104e-2 weak cohen1988
#> 2 SE 2.736152899e-3 <NA> <NA>
#> 3 Lower CI 3.606150990e-2 weak cohen1988
#> 4 Upper CI 4.678703217e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.250235338e+1
#> 2 logLik 4.998610828e+4
#> 3 AIC -9.989969155e+4
#> 4 BIC -9.961565862e+4
#> 5 deviance 1.849002609e+4
#> 6 df.residual 1.860049765e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 4.142427104e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.047356929e-2
#> 2 mean((Intercept)) -3.345171523e+0
#> 3 mean(s(spei_12m)) 4.225728384e-2
#> 4 mean(te(gini_index,gdp_per_capita)) 2.292862782e-2
#> 5 mean(s(year)) 1.226894913e-1
#> 6 s(spei_12m).1 -1.875084990e-2
#> 7 s(spei_12m).2 3.798724462e-2
#> 8 s(spei_12m).3 6.800823251e-2
#> 9 s(spei_12m).4 1.810036606e-2
#> 10 s(spei_12m).5 3.882320265e-2
#> 11 s(spei_12m).6 3.345659343e-2
#> 12 s(spei_12m).7 -2.251618924e-3
#> 13 s(spei_12m).8 1.536563874e-1
#> 14 s(spei_12m).9 5.128599675e-2
#> 15 te(gini_index,gdp_per_capita).1 -5.657507162e-1
#> 16 te(gini_index,gdp_per_capita).2 -8.166655648e-1
#> 17 te(gini_index,gdp_per_capita).3 -9.351097430e-1
#> 18 te(gini_index,gdp_per_capita).4 -2.045032809e+0
#> 19 te(gini_index,gdp_per_capita).5 1.087263930e-1
#> 20 te(gini_index,gdp_per_capita).6 -4.996336921e-2
#> 21 te(gini_index,gdp_per_capita).7 -6.172350343e-2
#> 22 te(gini_index,gdp_per_capita).8 -1.767549232e-1
#> 23 te(gini_index,gdp_per_capita).9 -4.210277676e-1
#> 24 te(gini_index,gdp_per_capita).10 2.430854408e-1
#> 25 te(gini_index,gdp_per_capita).11 5.746072511e-2
#> 26 te(gini_index,gdp_per_capita).12 -1.307829409e-2
#> 27 te(gini_index,gdp_per_capita).13 -4.046645080e-2
#> 28 te(gini_index,gdp_per_capita).14 7.315849399e-2
#> 29 te(gini_index,gdp_per_capita).15 4.020858376e-1
#> 30 te(gini_index,gdp_per_capita).16 7.232099530e-2
#> 31 te(gini_index,gdp_per_capita).17 1.303862184e-1
#> 32 te(gini_index,gdp_per_capita).18 -8.201898991e-2
#> 33 te(gini_index,gdp_per_capita).19 6.086204874e-1
#> 34 te(gini_index,gdp_per_capita).20 1.056016754e-1
#> 35 te(gini_index,gdp_per_capita).21 1.070040759e-1
#> 36 te(gini_index,gdp_per_capita).22 1.384044511e-1
#> 37 te(gini_index,gdp_per_capita).23 1.064024989e-1
#> 38 te(gini_index,gdp_per_capita).24 3.604621906e+0
#> 39 s(year).1 -1.350140188e-1
#> 40 s(year).2 5.566565020e-1
#> 41 s(year).3 2.245625762e-1
#> 42 s(year).4 -2.347988636e-1
#> 43 s(year).5 7.913054830e-2
#> 44 s(year).6 -6.095078426e-2
#> 45 s(year).7 -1.439211357e-1
#> 46 s(year).8 6.996932754e-1
#> 47 s(year).9 1.188473217e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.588613525e-24 0.8429077979 5.455094612e-1 0.8634520043
#> 2 observed 2.588613525e-24 0.6622285703 1.480704111e-1 0.4259404839
#> 3 estimate 2.588613525e-24 0.6993780697 5.125519725e-3 0.6055875044
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(122.996)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.325435627 0.009245964 -359.6635 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.004795 1.009506 0.14867 0.7065947
#> te(gini_index,gdp_per_capita) 8.455573 9.566611 93.45654 < 2.22e-16 ***
#> s(year) 3.256705 4.040311 16.43895 0.0026288 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0233 Deviance explained = 5.22%
#> -REML = -6999.6 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.326617198e-2 weak cohen1988
#> 2 SE 5.648188107e-3 <NA> <NA>
#> 3 Lower CI 1.219592671e-2 very weak (negligible) cohen1988
#> 4 Upper CI 3.433641725e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.371707324e+1
#> 2 logLik 7.023778556e+3
#> 3 AIC -1.401432425e+4
#> 4 BIC -1.391729874e+4
#> 5 deviance 2.489902384e+3
#> 6 df.residual 2.524282927e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 2.326617198e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -8.625410604e-2
#> 2 mean((Intercept)) -3.325435627e+0
#> 3 mean(s(spei_12m)) 4.791637459e-4
#> 4 mean(te(gini_index,gdp_per_capita)) -1.739341328e-2
#> 5 mean(s(year)) 3.293168048e-3
#> 6 s(spei_12m).1 -3.000760073e-6
#> 7 s(spei_12m).2 2.378060235e-5
#> 8 s(spei_12m).3 -3.825313518e-6
#> 9 s(spei_12m).4 -1.782378262e-5
#> 10 s(spei_12m).5 -1.219955622e-6
#> 11 s(spei_12m).6 1.592070510e-5
#> 12 s(spei_12m).7 3.877806512e-6
#> 13 s(spei_12m).8 1.017514304e-4
#> 14 s(spei_12m).9 4.193012981e-3
#> 15 te(gini_index,gdp_per_capita).1 2.056445091e-1
#> 16 te(gini_index,gdp_per_capita).2 2.025550502e-1
#> 17 te(gini_index,gdp_per_capita).3 1.762393863e-1
#> 18 te(gini_index,gdp_per_capita).4 -1.224984698e+0
#> 19 te(gini_index,gdp_per_capita).5 3.997798585e-2
#> 20 te(gini_index,gdp_per_capita).6 -5.588922976e-2
#> 21 te(gini_index,gdp_per_capita).7 1.003110153e-1
#> 22 te(gini_index,gdp_per_capita).8 -1.097129110e-1
#> 23 te(gini_index,gdp_per_capita).9 -2.744763933e-1
#> 24 te(gini_index,gdp_per_capita).10 1.009906730e-1
#> 25 te(gini_index,gdp_per_capita).11 4.814252520e-2
#> 26 te(gini_index,gdp_per_capita).12 9.443936146e-2
#> 27 te(gini_index,gdp_per_capita).13 -4.685388064e-3
#> 28 te(gini_index,gdp_per_capita).14 -2.249644666e-3
#> 29 te(gini_index,gdp_per_capita).15 8.607675486e-2
#> 30 te(gini_index,gdp_per_capita).16 -1.953587180e-2
#> 31 te(gini_index,gdp_per_capita).17 9.941076722e-2
#> 32 te(gini_index,gdp_per_capita).18 -1.040876840e-1
#> 33 te(gini_index,gdp_per_capita).19 3.400208987e-1
#> 34 te(gini_index,gdp_per_capita).20 -6.789080279e-1
#> 35 te(gini_index,gdp_per_capita).21 -6.223248618e-1
#> 36 te(gini_index,gdp_per_capita).22 -5.815863294e-1
#> 37 te(gini_index,gdp_per_capita).23 -5.333180324e-1
#> 38 te(gini_index,gdp_per_capita).24 2.300508226e+0
#> 39 s(year).1 4.704513755e-2
#> 40 s(year).2 -8.055814693e-3
#> 41 s(year).3 8.333243278e-3
#> 42 s(year).4 -2.344524022e-2
#> 43 s(year).5 -9.570532424e-3
#> 44 s(year).6 -1.405328347e-2
#> 45 s(year).7 -5.946110945e-3
#> 46 s(year).8 8.608179055e-2
#> 47 s(year).9 -5.075067719e-2
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.623684980e-25 0.5766265013 4.569162593e-1 0.6028488674
#> 2 observed 2.623684980e-25 0.5543540266 2.240419253e-2 0.1014019908
#> 3 estimate 2.623684980e-25 0.4331896267 9.220398167e-3 0.3812821727
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mpepr_gam_1_by_misfs,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_1_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_mpepr_gam_1_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(maper_mpepr_gam_1_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.355)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.755977108 0.008386769 -328.6101 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.776535 5.938639 37.82482 0.0000036304 ***
#> te(gini_index,gdp_per_capita) 18.075045 19.824315 343.32429 < 2.22e-16 ***
#> s(year) 7.118255 8.171091 97.69835 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00387 Deviance explained = 7.31%
#> -REML = -13651 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.096983533e+1
#> 2 logLik 1.372709120e+4
#> 3 AIC -2.738277232e+4
#> 4 BIC -2.713670572e+4
#> 5 deviance 7.309308647e+3
#> 6 df.residual 7.240030165e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared -3.869200836e-3
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -4.406019910e-1
#> 2 mean((Intercept)) -2.755977108e+0
#> 3 mean(s(spei_12m)) 3.219014311e-2
#> 4 mean(te(gini_index,gdp_per_capita)) -6.829197948e-1
#> 5 mean(s(year)) -9.949413102e-3
#> 6 s(spei_12m).1 1.901856231e-1
#> 7 s(spei_12m).2 8.593523485e-3
#> 8 s(spei_12m).3 1.887645942e-2
#> 9 s(spei_12m).4 3.190725471e-3
#> 10 s(spei_12m).5 -5.489184874e-3
#> 11 s(spei_12m).6 -7.158724704e-3
#> 12 s(spei_12m).7 9.845276069e-4
#> 13 s(spei_12m).8 -4.179726603e-2
#> 14 s(spei_12m).9 1.223256045e-1
#> 15 te(gini_index,gdp_per_capita).1 -8.133208281e-1
#> 16 te(gini_index,gdp_per_capita).2 -6.051457892e-1
#> 17 te(gini_index,gdp_per_capita).3 -4.607665795e-2
#> 18 te(gini_index,gdp_per_capita).4 -1.824669954e+1
#> 19 te(gini_index,gdp_per_capita).5 4.099811690e-1
#> 20 te(gini_index,gdp_per_capita).6 4.829684339e-1
#> 21 te(gini_index,gdp_per_capita).7 -5.519273677e-1
#> 22 te(gini_index,gdp_per_capita).8 6.056486376e-1
#> 23 te(gini_index,gdp_per_capita).9 1.996272080e+0
#> 24 te(gini_index,gdp_per_capita).10 3.643412525e-1
#> 25 te(gini_index,gdp_per_capita).11 2.128293996e-1
#> 26 te(gini_index,gdp_per_capita).12 -1.541639457e-1
#> 27 te(gini_index,gdp_per_capita).13 2.162996575e-1
#> 28 te(gini_index,gdp_per_capita).14 3.609528286e+0
#> 29 te(gini_index,gdp_per_capita).15 5.284393397e-1
#> 30 te(gini_index,gdp_per_capita).16 5.492881349e-1
#> 31 te(gini_index,gdp_per_capita).17 -9.042076004e-2
#> 32 te(gini_index,gdp_per_capita).18 4.216994722e-1
#> 33 te(gini_index,gdp_per_capita).19 3.167660757e+0
#> 34 te(gini_index,gdp_per_capita).20 3.888327555e-2
#> 35 te(gini_index,gdp_per_capita).21 1.739075164e-1
#> 36 te(gini_index,gdp_per_capita).22 2.076039317e-1
#> 37 te(gini_index,gdp_per_capita).23 2.295642425e-1
#> 38 te(gini_index,gdp_per_capita).24 -9.097235769e+0
#> 39 s(year).1 1.807572260e-1
#> 40 s(year).2 1.161355703e-1
#> 41 s(year).3 -2.251154272e-1
#> 42 s(year).4 -1.667130746e-2
#> 43 s(year).5 2.517080232e-2
#> 44 s(year).6 5.177043688e-2
#> 45 s(year).7 -4.796922227e-2
#> 46 s(year).8 1.954662025e-1
#> 47 s(year).9 -3.690889990e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 1.223297314e-24 0.5789015684 0.3501118687 0.6460694532
#> 2 observed 1.223297314e-24 0.5094922954 0.1125723691 0.3239213260
#> 3 estimate 1.223297314e-24 0.4778441467 0.01041126877 0.4377095149
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(21.349)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.172948414 0.004884498 -649.5956 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.666888 8.968644 283.0247 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.608027 19.730851 3171.5181 < 2.22e-16 ***
#> s(year) 8.388341 8.894377 575.4291 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0111 Deviance explained = 12.8%
#> -REML = -65624 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.111641718e-2 very weak (negligible) cohen1988
#> 2 SE 1.170324273e-3 <NA> <NA>
#> 3 Lower CI 8.822623756e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.341021061e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.666325572e+1
#> 2 logLik 6.572498770e+4
#> 3 AIC -1.313707877e+5
#> 4 BIC -1.310430850e+5
#> 5 deviance 3.083079009e+4
#> 6 df.residual 2.900833674e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared 1.111641718e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 1.929476076e-2
#> 2 mean((Intercept)) -3.172948414e+0
#> 3 mean(s(spei_12m)) -1.514257407e-2
#> 4 mean(te(gini_index,gdp_per_capita)) 1.140287882e-1
#> 5 mean(s(year)) 1.558017086e-1
#> 6 s(spei_12m).1 2.290782865e-1
#> 7 s(spei_12m).2 -3.341316471e-1
#> 8 s(spei_12m).3 1.851363596e-1
#> 9 s(spei_12m).4 3.666112998e-1
#> 10 s(spei_12m).5 -1.387769113e-1
#> 11 s(spei_12m).6 4.511793117e-1
#> 12 s(spei_12m).7 -2.569627908e-1
#> 13 s(spei_12m).8 -1.003286496e+0
#> 14 s(spei_12m).9 3.648694214e-1
#> 15 te(gini_index,gdp_per_capita).1 -1.115667926e+0
#> 16 te(gini_index,gdp_per_capita).2 -1.078525120e+0
#> 17 te(gini_index,gdp_per_capita).3 -1.092221740e+0
#> 18 te(gini_index,gdp_per_capita).4 -9.843288210e-2
#> 19 te(gini_index,gdp_per_capita).5 5.527960466e-1
#> 20 te(gini_index,gdp_per_capita).6 1.854050696e-1
#> 21 te(gini_index,gdp_per_capita).7 -4.864994412e-1
#> 22 te(gini_index,gdp_per_capita).8 1.463440865e-1
#> 23 te(gini_index,gdp_per_capita).9 4.322865670e-1
#> 24 te(gini_index,gdp_per_capita).10 8.199258421e-1
#> 25 te(gini_index,gdp_per_capita).11 2.947882962e-1
#> 26 te(gini_index,gdp_per_capita).12 -6.195427247e-2
#> 27 te(gini_index,gdp_per_capita).13 1.475593332e-1
#> 28 te(gini_index,gdp_per_capita).14 6.184043553e-1
#> 29 te(gini_index,gdp_per_capita).15 9.412130801e-1
#> 30 te(gini_index,gdp_per_capita).16 5.459611382e-1
#> 31 te(gini_index,gdp_per_capita).17 -2.565181724e-1
#> 32 te(gini_index,gdp_per_capita).18 6.410611405e-1
#> 33 te(gini_index,gdp_per_capita).19 8.094024602e-1
#> 34 te(gini_index,gdp_per_capita).20 8.493565579e-1
#> 35 te(gini_index,gdp_per_capita).21 1.656340390e-1
#> 36 te(gini_index,gdp_per_capita).22 -9.887089081e-1
#> 37 te(gini_index,gdp_per_capita).23 -1.201792529e+0
#> 38 te(gini_index,gdp_per_capita).24 1.966873895e+0
#> 39 s(year).1 1.053706023e-1
#> 40 s(year).2 7.048957870e-1
#> 41 s(year).3 1.701448202e-1
#> 42 s(year).4 -3.525761319e-1
#> 43 s(year).5 -1.379700020e-1
#> 44 s(year).6 -9.816284554e-2
#> 45 s(year).7 -8.525749605e-2
#> 46 s(year).8 8.641039214e-1
#> 47 s(year).9 2.316667224e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.135124790e-24 0.4386344126 2.754406321e-1 0.5079354649
#> 2 observed 3.135124790e-24 0.1740116393 1.114188370e-1 0.2200943491
#> 3 estimate 3.135124790e-24 0.3128056866 3.775205272e-3 0.3758159024
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(51.451)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.651927983 0.003844841 -689.7368 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 6.641757 7.813143 153.5556 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 14.962768 16.553873 683.3973 < 2.22e-16 ***
#> s(year) 8.554171 8.934388 196.6720 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0461 Deviance explained = 6.64%
#> -REML = -38025 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.606146655e-2 weak cohen1988
#> 2 SE 2.871281478e-3 <NA> <NA>
#> 3 Lower CI 4.043385826e-2 weak cohen1988
#> 4 Upper CI 5.168907483e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.115869583e+1
#> 2 logLik 3.810148158e+4
#> 3 AIC -7.613236036e+4
#> 4 BIC -7.585585542e+4
#> 5 deviance 1.823573248e+4
#> 6 df.residual 1.860184130e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 4.606146655e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 4.285571478e-2
#> 2 mean((Intercept)) -2.651927983e+0
#> 3 mean(s(spei_12m)) 6.313432897e-2
#> 4 mean(te(gini_index,gdp_per_capita)) 1.352025702e-1
#> 5 mean(s(year)) 7.573923040e-2
#> 6 s(spei_12m).1 1.452129842e-2
#> 7 s(spei_12m).2 9.956789165e-2
#> 8 s(spei_12m).3 3.699797817e-2
#> 9 s(spei_12m).4 4.469130283e-2
#> 10 s(spei_12m).5 2.983332191e-2
#> 11 s(spei_12m).6 6.930840958e-2
#> 12 s(spei_12m).7 -3.452431812e-3
#> 13 s(spei_12m).8 2.520160486e-1
#> 14 s(spei_12m).9 2.472514138e-2
#> 15 te(gini_index,gdp_per_capita).1 -3.668986012e-1
#> 16 te(gini_index,gdp_per_capita).2 -5.469731831e-1
#> 17 te(gini_index,gdp_per_capita).3 -6.559186599e-1
#> 18 te(gini_index,gdp_per_capita).4 -4.691881697e+0
#> 19 te(gini_index,gdp_per_capita).5 1.417652835e-1
#> 20 te(gini_index,gdp_per_capita).6 -6.229878061e-2
#> 21 te(gini_index,gdp_per_capita).7 -6.666018409e-2
#> 22 te(gini_index,gdp_per_capita).8 -1.452393721e-1
#> 23 te(gini_index,gdp_per_capita).9 -9.753825325e-1
#> 24 te(gini_index,gdp_per_capita).10 2.273964125e-1
#> 25 te(gini_index,gdp_per_capita).11 2.939425078e-2
#> 26 te(gini_index,gdp_per_capita).12 -2.212000527e-2
#> 27 te(gini_index,gdp_per_capita).13 -3.783396595e-2
#> 28 te(gini_index,gdp_per_capita).14 1.279722294e-1
#> 29 te(gini_index,gdp_per_capita).15 3.467158628e-1
#> 30 te(gini_index,gdp_per_capita).16 7.329488361e-2
#> 31 te(gini_index,gdp_per_capita).17 1.090954339e-1
#> 32 te(gini_index,gdp_per_capita).18 -5.725255595e-2
#> 33 te(gini_index,gdp_per_capita).19 1.301381627e+0
#> 34 te(gini_index,gdp_per_capita).20 2.238465500e-1
#> 35 te(gini_index,gdp_per_capita).21 1.085876272e-1
#> 36 te(gini_index,gdp_per_capita).22 9.595694236e-2
#> 37 te(gini_index,gdp_per_capita).23 6.102479284e-2
#> 38 te(gini_index,gdp_per_capita).24 8.026889327e+0
#> 39 s(year).1 -1.504422998e-1
#> 40 s(year).2 2.357220644e-1
#> 41 s(year).3 1.583952211e-1
#> 42 s(year).4 -5.762623951e-2
#> 43 s(year).5 1.442739384e-2
#> 44 s(year).6 1.069989405e-1
#> 45 s(year).7 -7.537140806e-2
#> 46 s(year).8 2.433103749e-1
#> 47 s(year).9 2.062390261e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.588613525e-24 0.8429077979 5.455094612e-1 0.8634520043
#> 2 observed 2.588613525e-24 0.6351147850 1.396226946e-1 0.5876180816
#> 3 estimate 2.588613525e-24 0.6993780697 5.125519725e-3 0.6055875044
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(64.445)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.696690087 0.009596718 -281.0013 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.006809 1.013479 0.04768 0.84493
#> te(gini_index,gdp_per_capita) 7.891249 9.063510 62.00787 < 2.22e-16 ***
#> s(year) 3.589674 4.450285 33.28154 0.0000030492 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0371 Deviance explained = 4.81%
#> -REML = -5460.6 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.708724622e-2 weak cohen1988
#> 2 SE 7.030232508e-3 <NA> <NA>
#> 3 Lower CI 2.330824370e-2 weak cohen1988
#> 4 Upper CI 5.086624873e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.348773209e+1
#> 2 logLik 5.483736802e+3
#> 3 AIC -1.093441906e+4
#> 4 BIC -1.083791413e+4
#> 5 deviance 2.479754506e+3
#> 6 df.residual 2.524512268e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 3.708724622e-2
#> 9 npar 4.3 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -9.528423826e-2
#> 2 mean((Intercept)) -2.696690087e+0
#> 3 mean(s(spei_12m)) 3.027541075e-4
#> 4 mean(te(gini_index,gdp_per_capita)) -5.804847399e-2
#> 5 mean(s(year)) -1.121507684e-3
#> 6 s(spei_12m).1 1.994354489e-6
#> 7 s(spei_12m).2 4.738565501e-5
#> 8 s(spei_12m).3 -6.827216411e-6
#> 9 s(spei_12m).4 -3.440676403e-5
#> 10 s(spei_12m).5 -4.793365804e-6
#> 11 s(spei_12m).6 3.222716085e-5
#> 12 s(spei_12m).7 7.421792535e-6
#> 13 s(spei_12m).8 2.055853066e-4
#> 14 s(spei_12m).9 2.476200045e-3
#> 15 te(gini_index,gdp_per_capita).1 2.334163582e-1
#> 16 te(gini_index,gdp_per_capita).2 2.283275142e-1
#> 17 te(gini_index,gdp_per_capita).3 1.953928059e-1
#> 18 te(gini_index,gdp_per_capita).4 -1.576059212e+0
#> 19 te(gini_index,gdp_per_capita).5 4.004715109e-2
#> 20 te(gini_index,gdp_per_capita).6 -7.059898593e-2
#> 21 te(gini_index,gdp_per_capita).7 1.085244476e-1
#> 22 te(gini_index,gdp_per_capita).8 -1.347438946e-1
#> 23 te(gini_index,gdp_per_capita).9 -5.778155428e-1
#> 24 te(gini_index,gdp_per_capita).10 8.633459914e-2
#> 25 te(gini_index,gdp_per_capita).11 3.286863627e-2
#> 26 te(gini_index,gdp_per_capita).12 9.000450242e-2
#> 27 te(gini_index,gdp_per_capita).13 -1.730461499e-2
#> 28 te(gini_index,gdp_per_capita).14 -2.916474382e-1
#> 29 te(gini_index,gdp_per_capita).15 6.260895042e-2
#> 30 te(gini_index,gdp_per_capita).16 -4.703797272e-2
#> 31 te(gini_index,gdp_per_capita).17 9.549187975e-2
#> 32 te(gini_index,gdp_per_capita).18 -1.294522719e-1
#> 33 te(gini_index,gdp_per_capita).19 5.586287163e-2
#> 34 te(gini_index,gdp_per_capita).20 -4.476376416e-1
#> 35 te(gini_index,gdp_per_capita).21 -4.157154991e-1
#> 36 te(gini_index,gdp_per_capita).22 -3.862159033e-1
#> 37 te(gini_index,gdp_per_capita).23 -3.618983154e-1
#> 38 te(gini_index,gdp_per_capita).24 1.834084200e+0
#> 39 s(year).1 7.432373471e-2
#> 40 s(year).2 -1.289563749e-2
#> 41 s(year).3 6.509401359e-3
#> 42 s(year).4 -2.220604991e-2
#> 43 s(year).5 -1.452598432e-2
#> 44 s(year).6 -1.043189976e-2
#> 45 s(year).7 -4.549882866e-3
#> 46 s(year).8 7.621055805e-2
#> 47 s(year).9 -1.025278089e-1
#>
#> # A tibble: 3 × 5
#> names para `s(spei_12m)` te(gini_index,gdp_per…¹ `s(year)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.623684980e-25 0.5766265013 4.569162593e-1 0.6028488674
#> 2 observed 2.623684980e-25 0.5546254028 3.650230025e-2 0.1791322168
#> 3 estimate 2.623684980e-25 0.4331896267 9.220398167e-3 0.3812821727
#> # ℹ abbreviated name: ¹`te(gini_index,gdp_per_capita)`
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_mpepr_gam_1_by_misfs,
type = 1,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_1_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By s(spei_12m)
+ te(gini_index, gdp_per_capita)
+ year
(Unordered year
)
Code
mbepr_gam_2_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(mbepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(mbepr_gam_2_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(20.645)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.794785629 0.009053899 -308.6831 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 2.335405 2.986140 14.35475 0.0023168 **
#> s(gini_index) 5.792060 6.961159 518.33928 < 2.22e-16 ***
#> s(gdp_per_capita) 7.273295 8.271906 77.13924 < 2.22e-16 ***
#> s(year) 7.468833 8.414253 202.49518 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0177 Deviance explained = 11%
#> -REML = -13702 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.765931166e-2 very weak (negligible) cohen1988
#> 2 SE 2.928714579e-3 <NA> <NA>
#> 3 Lower CI 1.191913657e-2 very weak (negligible) cohen1988
#> 4 Upper CI 2.339948676e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.386959237e+1
#> 2 logLik 1.375878493e+4
#> 3 AIC -2.746144484e+4
#> 4 BIC -2.726804787e+4
#> 5 deviance 7.431966409e+3
#> 6 df.residual 7.247130408e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared 1.765931166e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -4.010255658e-2
#> 2 mean((Intercept)) -2.794785629e+0
#> 3 mean(s(spei_12m)) -3.284141535e-3
#> 4 mean(s(gini_index)) -3.758782747e-2
#> 5 mean(s(gdp_per_capita)) 1.606317999e-2
#> 6 mean(s(year)) 1.704744597e-1
#> 7 s(spei_12m).1 -2.800090691e-2
#> 8 s(spei_12m).2 -6.201459178e-3
#> 9 s(spei_12m).3 -2.164087346e-3
#> 10 s(spei_12m).4 7.196284221e-5
#> 11 s(spei_12m).5 7.206934877e-4
#> 12 s(spei_12m).6 -1.404158755e-3
#> 13 s(spei_12m).7 8.579721335e-4
#> 14 s(spei_12m).8 -1.512066963e-2
#> 15 s(spei_12m).9 2.168337953e-2
#> 16 s(gini_index).1 -2.732560574e-1
#> 17 s(gini_index).2 -1.096765477e-1
#> 18 s(gini_index).3 2.284562910e-2
#> 19 s(gini_index).4 6.898758950e-2
#> 20 s(gini_index).5 1.239439639e-3
#> 21 s(gini_index).6 6.072336420e-2
#> 22 s(gini_index).7 -8.495233819e-3
#> 23 s(gini_index).8 -5.348737645e-1
#> 24 s(gini_index).9 4.342151338e-1
#> 25 s(gdp_per_capita).1 -2.693582250e-1
#> 26 s(gdp_per_capita).2 1.302634882e+0
#> 27 s(gdp_per_capita).3 -1.620643315e-1
#> 28 s(gdp_per_capita).4 -1.037084845e+0
#> 29 s(gdp_per_capita).5 3.997390158e-1
#> 30 s(gdp_per_capita).6 3.751029712e-1
#> 31 s(gdp_per_capita).7 3.790632931e-1
#> 32 s(gdp_per_capita).8 -5.283540204e-1
#> 33 s(gdp_per_capita).9 -3.151101197e-1
#> 34 s(year).1 -1.562128861e-1
#> 35 s(year).2 4.628131613e-1
#> 36 s(year).3 4.828498920e-1
#> 37 s(year).4 -4.733164369e-1
#> 38 s(year).5 -9.642104613e-2
#> 39 s(year).6 -1.893058978e-1
#> 40 s(year).7 -1.371664967e-1
#> 41 s(year).8 9.342834430e-1
#> 42 s(year).9 7.067464044e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 6.018316380e-23 0.5761405221 0.07611800630 0.3621822964
#> 2 observed 6.018316380e-23 0.5536825861 0.04688422748 0.2746839793
#> 3 estimate 6.018316380e-23 0.4736086041 0.04868857031 0.06453532138
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.424)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.101995783 0.004989292 -621.7307 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.497940 8.461656 69.96153 < 2.22e-16 ***
#> s(gini_index) 7.564992 8.510361 1750.90329 < 2.22e-16 ***
#> s(gdp_per_capita) 8.495967 8.918649 357.27585 < 2.22e-16 ***
#> s(year) 8.406827 8.898542 422.94280 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0215 Deviance explained = 9.46%
#> -REML = -63787 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.296572484e+1
#> 2 logLik 6.387643158e+4
#> 3 AIC -1.276792847e+5
#> 4 BIC -1.273747951e+5
#> 5 deviance 3.045167811e+4
#> 6 df.residual 2.901203428e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -2.153079024e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -6.509789391e-2
#> 2 mean((Intercept)) -3.101995783e+0
#> 3 mean(s(spei_12m)) 2.974273612e-2
#> 4 mean(s(gini_index)) -1.674274894e-2
#> 5 mean(s(gdp_per_capita)) -8.211360504e-2
#> 6 mean(s(year)) 1.461551411e-1
#> 7 s(spei_12m).1 1.209334810e-1
#> 8 s(spei_12m).2 4.871584887e-2
#> 9 s(spei_12m).3 -1.666547151e-3
#> 10 s(spei_12m).4 3.415842391e-2
#> 11 s(spei_12m).5 -5.651007575e-2
#> 12 s(spei_12m).6 9.381493253e-2
#> 13 s(spei_12m).7 -5.734312412e-2
#> 14 s(spei_12m).8 -7.567615749e-2
#> 15 s(spei_12m).9 1.612578432e-1
#> 16 s(gini_index).1 1.176940919e-1
#> 17 s(gini_index).2 1.463703123e-1
#> 18 s(gini_index).3 -9.351864039e-2
#> 19 s(gini_index).4 -7.501652163e-2
#> 20 s(gini_index).5 -5.505601871e-2
#> 21 s(gini_index).6 4.673897625e-2
#> 22 s(gini_index).7 -3.410661118e-3
#> 23 s(gini_index).8 -4.915618666e-1
#> 24 s(gini_index).9 2.570755876e-1
#> 25 s(gdp_per_capita).1 -1.059502179e+0
#> 26 s(gdp_per_capita).2 4.444706395e+0
#> 27 s(gdp_per_capita).3 -1.061165770e+0
#> 28 s(gdp_per_capita).4 2.284681762e+0
#> 29 s(gdp_per_capita).5 5.260063747e-2
#> 30 s(gdp_per_capita).6 -2.413318160e+0
#> 31 s(gdp_per_capita).7 -1.405491536e+0
#> 32 s(gdp_per_capita).8 -1.209907718e+0
#> 33 s(gdp_per_capita).9 -3.716258777e-1
#> 34 s(year).1 -4.643236533e-2
#> 35 s(year).2 6.738302062e-1
#> 36 s(year).3 3.075443949e-1
#> 37 s(year).4 -5.761625924e-1
#> 38 s(year).5 -9.161364383e-2
#> 39 s(year).6 -2.217606870e-1
#> 40 s(year).7 -2.072590262e-1
#> 41 s(year).8 1.170922239e+0
#> 42 s(year).9 3.063277447e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 4.416008270e-24 0.4360888285 0.01511824469 0.2789251867
#> 2 observed 4.416008270e-24 0.2087505077 0.01381410559 0.2667515182
#> 3 estimate 4.416008270e-24 0.3105041066 0.01025400490 0.03886406860
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(41.671)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.622912858 0.004159424 -630.5952 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.943946 8.717106 51.02596 < 2.22e-16 ***
#> s(gini_index) 5.513080 6.715607 619.43820 < 2.22e-16 ***
#> s(gdp_per_capita) 8.728594 8.977220 175.28854 < 2.22e-16 ***
#> s(year) 7.785749 8.583187 41.32360 0.000001312 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0588 Deviance explained = 6.7%
#> -REML = -36213 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 5.880111415e-2 weak cohen1988
#> 2 SE 3.200815774e-3 <NA> <NA>
#> 3 Lower CI 5.252763051e-2 weak cohen1988
#> 4 Upper CI 6.507459779e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.097136877e+1
#> 2 logLik 3.629844913e+4
#> 3 AIC -7.252691202e+4
#> 4 BIC -7.225282178e+4
#> 5 deviance 1.814156592e+4
#> 6 df.residual 1.860202863e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 5.880111415e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.730125643e-1
#> 2 mean((Intercept)) -2.622912858e+0
#> 3 mean(s(spei_12m)) -9.904104487e-3
#> 4 mean(s(gini_index)) 3.324272489e-2
#> 5 mean(s(gdp_per_capita)) -4.884281307e-1
#> 6 mean(s(year)) 4.525039672e-2
#> 7 s(spei_12m).1 -2.411235687e-2
#> 8 s(spei_12m).2 -5.150188762e-2
#> 9 s(spei_12m).3 4.418524598e-2
#> 10 s(spei_12m).4 -1.058921762e-1
#> 11 s(spei_12m).5 5.987569521e-2
#> 12 s(spei_12m).6 -7.094119697e-2
#> 13 s(spei_12m).7 1.065834763e-1
#> 14 s(spei_12m).8 -2.320310764e-1
#> 15 s(spei_12m).9 1.846973361e-1
#> 16 s(gini_index).1 1.300029685e-2
#> 17 s(gini_index).2 -1.878149202e-2
#> 18 s(gini_index).3 1.205698947e-2
#> 19 s(gini_index).4 7.150397320e-3
#> 20 s(gini_index).5 9.804081054e-5
#> 21 s(gini_index).6 -4.910243391e-3
#> 22 s(gini_index).7 4.772716960e-3
#> 23 s(gini_index).8 1.742213047e-1
#> 24 s(gini_index).9 1.115765133e-1
#> 25 s(gdp_per_capita).1 7.031719222e-1
#> 26 s(gdp_per_capita).2 2.629725044e+0
#> 27 s(gdp_per_capita).3 -1.163267896e+0
#> 28 s(gdp_per_capita).4 -1.888879027e+0
#> 29 s(gdp_per_capita).5 5.416285616e-1
#> 30 s(gdp_per_capita).6 -2.016915875e+0
#> 31 s(gdp_per_capita).7 -1.271113210e+0
#> 32 s(gdp_per_capita).8 -1.635437685e+0
#> 33 s(gdp_per_capita).9 -2.947650107e-1
#> 34 s(year).1 -6.394348878e-2
#> 35 s(year).2 1.602570153e-1
#> 36 s(year).3 1.124404424e-1
#> 37 s(year).4 -1.214314412e-1
#> 38 s(year).5 -3.382020377e-2
#> 39 s(year).6 3.717539635e-2
#> 40 s(year).7 -4.345216234e-2
#> 41 s(year).8 1.655460317e-1
#> 42 s(year).9 1.944819809e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.637050883e-21 0.8426469523 0.03550855298 0.5330944727
#> 2 observed 2.637050883e-21 0.3495974326 0.03088270092 0.5123841868
#> 3 estimate 2.637050883e-21 0.6978053901 0.02633734989 0.05260443087
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(37.599)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.2875881 0.0104973 -217.9215 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 3.341449 4.220331 8.34256 0.09068169 .
#> s(gini_index) 2.753885 3.505130 20.37794 0.00042007 ***
#> s(gdp_per_capita) 7.144262 8.140794 135.26661 < 2.22e-16 ***
#> s(year) 6.824398 7.908862 22.45549 0.00503786 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0963 Deviance explained = 11.4%
#> -REML = -4350.4 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0.09634833785 weak cohen1988
#> 2 SE 0.01063392569 <NA> <NA>
#> 3 Lower CI 0.07550622650 weak cohen1988
#> 4 Upper CI 0.1171904492 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.106399388e+1
#> 2 logLik 4.399800629e+3
#> 3 AIC -8.748051022e+3
#> 4 BIC -8.597546717e+3
#> 5 deviance 2.446588085e+3
#> 6 df.residual 2.516936006e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 9.634833785e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.990231968e-1
#> 2 mean((Intercept)) -2.287588141e+0
#> 3 mean(s(spei_12m)) 7.046285299e-3
#> 4 mean(s(gini_index)) -2.057723480e-2
#> 5 mean(s(gdp_per_capita)) -9.942320383e-1
#> 6 mean(s(year)) 3.262186105e-2
#> 7 s(spei_12m).1 -5.749924131e-2
#> 8 s(spei_12m).2 5.465565122e-2
#> 9 s(spei_12m).3 4.979509309e-4
#> 10 s(spei_12m).4 -1.169884383e-2
#> 11 s(spei_12m).5 -8.230836704e-3
#> 12 s(spei_12m).6 1.773257445e-2
#> 13 s(spei_12m).7 1.806013800e-3
#> 14 s(spei_12m).8 1.080750474e-1
#> 15 s(spei_12m).9 -4.192174822e-2
#> 16 s(gini_index).1 -4.055783192e-2
#> 17 s(gini_index).2 -2.733985840e-2
#> 18 s(gini_index).3 -5.465611918e-3
#> 19 s(gini_index).4 -1.252970108e-2
#> 20 s(gini_index).5 -5.801630650e-3
#> 21 s(gini_index).6 -1.213468482e-2
#> 22 s(gini_index).7 -5.168142860e-4
#> 23 s(gini_index).8 -8.685741112e-2
#> 24 s(gini_index).9 6.008431003e-3
#> 25 s(gdp_per_capita).1 7.693324141e-1
#> 26 s(gdp_per_capita).2 -4.848757902e+0
#> 27 s(gdp_per_capita).3 -3.383533165e-1
#> 28 s(gdp_per_capita).4 -3.207648660e+0
#> 29 s(gdp_per_capita).5 7.225122516e-1
#> 30 s(gdp_per_capita).6 2.024340427e+0
#> 31 s(gdp_per_capita).7 -1.436186167e+0
#> 32 s(gdp_per_capita).8 -2.195070964e+0
#> 33 s(gdp_per_capita).9 -4.382564283e-1
#> 34 s(year).1 1.418128481e-2
#> 35 s(year).2 6.211692971e-2
#> 36 s(year).3 1.565449604e-1
#> 37 s(year).4 -2.229009205e-1
#> 38 s(year).5 6.680584230e-3
#> 39 s(year).6 4.854319762e-2
#> 40 s(year).7 -4.388746656e-2
#> 41 s(year).8 1.599205323e-1
#> 42 s(year).9 1.123976474e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.858430707e-25 0.5727624185 0.04204433397 0.4205494060
#> 2 observed 3.858430707e-25 0.3552794535 0.01747489786 0.3370786489
#> 3 estimate 3.858430707e-25 0.4276408768 0.01993345190 0.04098973891
#> # ℹ 1 more variable: `s(year)` <dbl>
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_gam_2_by_misfs,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_2_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
beipr_gam_2_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(beipr_gam_2_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(29.485)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.676747933 0.007784276 -343.866 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.156348 5.201087 30.20657 0.000019399 ***
#> s(gini_index) 7.794767 8.618986 714.31368 < 2.22e-16 ***
#> s(gdp_per_capita) 7.991619 8.720463 112.59631 < 2.22e-16 ***
#> s(year) 5.574152 6.723712 280.48307 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0909 Deviance explained = 14.7%
#> -REML = -13573 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 9.089254382e-2 weak cohen1988
#> 2 SE 6.149040868e-3 <NA> <NA>
#> 3 Lower CI 7.884064518e-2 weak cohen1988
#> 4 Upper CI 1.029444425e-1 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.651688584e+1
#> 2 logLik 1.363785208e+4
#> 3 AIC -2.721434640e+4
#> 4 BIC -2.700291835e+4
#> 5 deviance 7.384978448e+3
#> 6 df.residual 7.244483114e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared 9.089254382e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -7.505897477e-2
#> 2 mean((Intercept)) -2.676747933e+0
#> 3 mean(s(spei_12m)) -3.518964215e-3
#> 4 mean(s(gini_index)) -5.437237290e-2
#> 5 mean(s(gdp_per_capita)) 1.368290154e-2
#> 6 mean(s(year)) 3.304908738e-2
#> 7 s(spei_12m).1 -7.493039988e-2
#> 8 s(spei_12m).2 -8.673230843e-2
#> 9 s(spei_12m).3 2.876778469e-3
#> 10 s(spei_12m).4 -2.294563216e-2
#> 11 s(spei_12m).5 -1.972962587e-2
#> 12 s(spei_12m).6 3.102751230e-2
#> 13 s(spei_12m).7 -1.516372618e-2
#> 14 s(spei_12m).8 2.004957302e-1
#> 15 s(spei_12m).9 -4.656900638e-2
#> 16 s(gini_index).1 -1.988463686e-2
#> 17 s(gini_index).2 -2.460878440e-1
#> 18 s(gini_index).3 1.213106788e-1
#> 19 s(gini_index).4 1.285509650e-1
#> 20 s(gini_index).5 9.538147034e-2
#> 21 s(gini_index).6 1.336098278e-1
#> 22 s(gini_index).7 4.572985468e-2
#> 23 s(gini_index).8 -6.172210122e-1
#> 24 s(gini_index).9 -1.307406597e-1
#> 25 s(gdp_per_capita).1 -4.920283257e-1
#> 26 s(gdp_per_capita).2 1.782176792e+0
#> 27 s(gdp_per_capita).3 -2.575549406e-1
#> 28 s(gdp_per_capita).4 -1.313757699e+0
#> 29 s(gdp_per_capita).5 6.576504901e-1
#> 30 s(gdp_per_capita).6 7.628282670e-1
#> 31 s(gdp_per_capita).7 6.990502074e-1
#> 32 s(gdp_per_capita).8 -1.376385935e+0
#> 33 s(gdp_per_capita).9 -3.388327432e-1
#> 34 s(year).1 9.356293054e-2
#> 35 s(year).2 -9.931390259e-2
#> 36 s(year).3 1.223787120e-1
#> 37 s(year).4 -3.751492538e-2
#> 38 s(year).5 2.102322445e-2
#> 39 s(year).6 1.598002720e-3
#> 40 s(year).7 5.078362540e-4
#> 41 s(year).8 1.678938543e-2
#> 42 s(year).9 1.784105229e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 6.018316380e-23 0.5761405221 0.07611800630 0.3621822964
#> 2 observed 6.018316380e-23 0.4968736100 0.04937530226 0.3354585437
#> 3 estimate 6.018316380e-23 0.4736086041 0.04868857031 0.06453532138
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(26.664)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.875388653 0.004268114 -673.6908 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.012988 8.748639 68.07721 < 2.22e-16 ***
#> s(gini_index) 7.202867 8.263537 2203.07043 < 2.22e-16 ***
#> s(gdp_per_capita) 8.460611 8.907337 349.62878 < 2.22e-16 ***
#> s(year) 7.456602 8.414459 407.63012 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0466 Deviance explained = 11%
#> -REML = -57765 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.213306824e+1
#> 2 logLik 5.785090545e+4
#> 3 AIC -1.156315675e+5
#> 4 BIC -1.153408793e+5
#> 5 deviance 3.026652769e+4
#> 6 df.residual 2.901286693e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -4.663147104e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -4.242595971e-2
#> 2 mean((Intercept)) -2.875388653e+0
#> 3 mean(s(spei_12m)) -4.281364360e-3
#> 4 mean(s(gini_index)) 7.334053918e-2
#> 5 mean(s(gdp_per_capita)) -3.111999236e-2
#> 6 mean(s(year)) 1.071306112e-1
#> 7 s(spei_12m).1 1.892045468e-1
#> 8 s(spei_12m).2 -3.115681936e-1
#> 9 s(spei_12m).3 2.050353739e-1
#> 10 s(spei_12m).4 2.862686075e-1
#> 11 s(spei_12m).5 -7.477958765e-2
#> 12 s(spei_12m).6 2.208019701e-1
#> 13 s(spei_12m).7 -1.483630859e-1
#> 14 s(spei_12m).8 -7.353569523e-1
#> 15 s(spei_12m).9 3.302250419e-1
#> 16 s(gini_index).1 1.238974793e-1
#> 17 s(gini_index).2 6.069056416e-3
#> 18 s(gini_index).3 -4.846869766e-2
#> 19 s(gini_index).4 -5.505074234e-3
#> 20 s(gini_index).5 9.342130405e-3
#> 21 s(gini_index).6 8.583941454e-3
#> 22 s(gini_index).7 2.133120986e-2
#> 23 s(gini_index).8 2.300665296e-1
#> 24 s(gini_index).9 3.147482775e-1
#> 25 s(gdp_per_capita).1 -7.656078008e-1
#> 26 s(gdp_per_capita).2 3.446682170e+0
#> 27 s(gdp_per_capita).3 -7.771330820e-1
#> 28 s(gdp_per_capita).4 1.788497240e+0
#> 29 s(gdp_per_capita).5 4.438083677e-2
#> 30 s(gdp_per_capita).6 -1.893039368e+0
#> 31 s(gdp_per_capita).7 -1.132328474e+0
#> 32 s(gdp_per_capita).8 -6.690332114e-1
#> 33 s(gdp_per_capita).9 -3.224982414e-1
#> 34 s(year).1 2.980586938e-2
#> 35 s(year).2 4.550423119e-1
#> 36 s(year).3 2.328937988e-1
#> 37 s(year).4 -3.649894777e-1
#> 38 s(year).5 -1.094505489e-2
#> 39 s(year).6 -1.844159168e-1
#> 40 s(year).7 -1.080741056e-1
#> 41 s(year).8 7.371471256e-1
#> 42 s(year).9 1.777109506e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 4.416008270e-24 0.4360888285 0.01511824469 0.2789251867
#> 2 observed 4.416008270e-24 0.09039186311 0.01414024439 0.2713209088
#> 3 estimate 4.416008270e-24 0.3105041066 0.01025400490 0.03886406860
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(80.655)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.516242491 0.002993073 -840.6885 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.035094 8.760306 46.92834 < 2.22e-16 ***
#> s(gini_index) 5.822206 7.026123 1141.86412 < 2.22e-16 ***
#> s(gdp_per_capita) 8.877345 8.995242 543.27625 < 2.22e-16 ***
#> s(year) 7.187456 8.163338 177.81744 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.13 Deviance explained = 11.5%
#> -REML = -40263 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.296768346e-1 weak cohen1988
#> 2 SE 4.395398346e-3 <NA> <NA>
#> 3 Lower CI 1.210620121e-1 weak cohen1988
#> 4 Upper CI 1.382916570e-1 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.092210099e+1
#> 2 logLik 4.035157860e+4
#> 3 AIC -8.063432088e+4
#> 4 BIC -8.036473411e+4
#> 5 deviance 1.838219719e+4
#> 6 df.residual 1.860207790e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 1.296768346e-1
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.681090152e-1
#> 2 mean((Intercept)) -2.516242491e+0
#> 3 mean(s(spei_12m)) -2.097718165e-2
#> 4 mean(s(gini_index)) 1.918423393e-2
#> 5 mean(s(gdp_per_capita)) -4.473367523e-1
#> 6 mean(s(year)) 3.759735896e-2
#> 7 s(spei_12m).1 -7.791289962e-2
#> 8 s(spei_12m).2 -8.360011364e-2
#> 9 s(spei_12m).3 3.468262431e-2
#> 10 s(spei_12m).4 -8.548959569e-2
#> 11 s(spei_12m).5 5.070883392e-2
#> 12 s(spei_12m).6 -6.719441350e-2
#> 13 s(spei_12m).7 8.859058409e-2
#> 14 s(spei_12m).8 -2.529316275e-1
#> 15 s(spei_12m).9 2.043519728e-1
#> 16 s(gini_index).1 -3.187519912e-2
#> 17 s(gini_index).2 -1.002617794e-2
#> 18 s(gini_index).3 -1.075940081e-2
#> 19 s(gini_index).4 7.083485252e-3
#> 20 s(gini_index).5 -7.155810467e-3
#> 21 s(gini_index).6 -1.388113269e-3
#> 22 s(gini_index).7 5.680508490e-3
#> 23 s(gini_index).8 1.676177057e-1
#> 24 s(gini_index).9 5.348110755e-2
#> 25 s(gdp_per_capita).1 6.921188742e-1
#> 26 s(gdp_per_capita).2 3.020329505e+0
#> 27 s(gdp_per_capita).3 -1.248736962e+0
#> 28 s(gdp_per_capita).4 -2.206882800e+0
#> 29 s(gdp_per_capita).5 5.449001587e-1
#> 30 s(gdp_per_capita).6 -1.910498920e+0
#> 31 s(gdp_per_capita).7 -1.320684518e+0
#> 32 s(gdp_per_capita).8 -1.202908590e+0
#> 33 s(gdp_per_capita).9 -3.936675184e-1
#> 34 s(year).1 3.167103085e-2
#> 35 s(year).2 2.458912020e-1
#> 36 s(year).3 8.925693988e-2
#> 37 s(year).4 -2.523857034e-1
#> 38 s(year).5 1.189731529e-2
#> 39 s(year).6 -1.086563866e-1
#> 40 s(year).7 -5.449428992e-2
#> 41 s(year).8 3.568766457e-1
#> 42 s(year).9 1.831947698e-2
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.637050883e-21 0.8426469523 0.03550855298 0.5330944727
#> 2 observed 2.637050883e-21 0.4919278244 0.03317385933 0.5311107434
#> 3 estimate 2.637050883e-21 0.6978053901 0.02633734989 0.05260443087
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(62.179)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.945338037 0.007425162 -261.9927 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.627049 2.045801 9.66952 0.00825501 **
#> s(gini_index) 1.004156 1.008299 205.13799 < 2.22e-16 ***
#> s(gdp_per_capita) 8.083926 8.757352 260.35579 < 2.22e-16 ***
#> s(year) 1.254570 1.460922 17.58299 0.00011179 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.204 Deviance explained = 18.3%
#> -REML = -4515.3 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0.2041550603 moderate cohen1988
#> 2 SE 0.01363260933 <NA> <NA>
#> 3 Lower CI 0.1774356369 moderate cohen1988
#> 4 Upper CI 0.2308744836 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.296970122e+1
#> 2 logLik 4.553735025e+3
#> 3 AIC -9.076925302e+3
#> 4 BIC -8.987747901e+3
#> 5 deviance 2.490663774e+3
#> 6 df.residual 2.525030299e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 2.041550603e-1
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.976879119e-1
#> 2 mean((Intercept)) -1.945338037e+0
#> 3 mean(s(spei_12m)) -9.040345112e-4
#> 4 mean(s(gini_index)) 1.142711493e-2
#> 5 mean(s(gdp_per_capita)) -6.122982989e-1
#> 6 mean(s(year)) 5.206918380e-3
#> 7 s(spei_12m).1 -1.958101522e-3
#> 8 s(spei_12m).2 -3.552279139e-3
#> 9 s(spei_12m).3 3.259372611e-4
#> 10 s(spei_12m).4 3.841980429e-3
#> 11 s(spei_12m).5 2.409598234e-4
#> 12 s(spei_12m).6 -3.734707327e-3
#> 13 s(spei_12m).7 -9.641894585e-4
#> 14 s(spei_12m).8 -2.438529262e-2
#> 15 s(spei_12m).9 2.204938195e-2
#> 16 s(gini_index).1 -2.261651841e-5
#> 17 s(gini_index).2 -1.667714974e-5
#> 18 s(gini_index).3 -2.978785438e-6
#> 19 s(gini_index).4 -2.461338570e-6
#> 20 s(gini_index).5 3.339809062e-7
#> 21 s(gini_index).6 -2.913064404e-6
#> 22 s(gini_index).7 -4.249251679e-7
#> 23 s(gini_index).8 -1.592494747e-5
#> 24 s(gini_index).9 1.029076971e-1
#> 25 s(gdp_per_capita).1 4.122639266e-1
#> 26 s(gdp_per_capita).2 -4.195777911e+0
#> 27 s(gdp_per_capita).3 4.067134863e-1
#> 28 s(gdp_per_capita).4 -2.527517650e+0
#> 29 s(gdp_per_capita).5 4.641889218e-1
#> 30 s(gdp_per_capita).6 1.889120453e+0
#> 31 s(gdp_per_capita).7 -1.194993449e+0
#> 32 s(gdp_per_capita).8 -1.828381949e-1
#> 33 s(gdp_per_capita).9 -5.818442731e-1
#> 34 s(year).1 -6.024627634e-4
#> 35 s(year).2 2.056365168e-3
#> 36 s(year).3 9.986499434e-4
#> 37 s(year).4 -2.046973706e-3
#> 38 s(year).5 -1.300628238e-4
#> 39 s(year).6 -1.575038417e-3
#> 40 s(year).7 -7.006118909e-4
#> 41 s(year).8 7.982712326e-3
#> 42 s(year).9 4.087968758e-2
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.858430707e-25 0.5727624185 0.04204433397 0.4205494060
#> 2 observed 3.858430707e-25 0.5272068669 0.02123109702 0.3640072697
#> 3 estimate 3.858430707e-25 0.4276408768 0.01993345190 0.04098973891
#> # ℹ 1 more variable: `s(year)` <dbl>
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = beipr_gam_2_by_misfs,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_2_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mbepr_beipr_gam_2_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(mbepr_beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(mbepr_beipr_gam_2_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(19.551)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.945910508 0.007329794 -265.4796 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.003418 1.006653 12.80477 0.00035794 ***
#> s(gini_index) 6.303245 7.462475 528.95724 < 2.22e-16 ***
#> s(gdp_per_capita) 8.247014 8.838725 186.23619 < 2.22e-16 ***
#> s(year) 7.070276 8.143459 194.63389 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.105 Deviance explained = 11.5%
#> -REML = -9462.8 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.045460825e-1 weak cohen1988
#> 2 SE 6.495687949e-3 <NA> <NA>
#> 3 Lower CI 9.181476807e-2 weak cohen1988
#> 4 Upper CI 1.172773969e-1 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.362395311e+1
#> 2 logLik 9.523282817e+3
#> 3 AIC -1.899357014e+4
#> 4 BIC -1.881095696e+4
#> 5 deviance 7.117607737e+3
#> 6 df.residual 7.247376047e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared 1.045460825e-1
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.232229013e-2
#> 2 mean((Intercept)) -1.945910508e+0
#> 3 mean(s(spei_12m)) 4.003418722e-3
#> 4 mean(s(gini_index)) -2.971501376e-2
#> 5 mean(s(gdp_per_capita)) 2.016867518e-2
#> 6 mean(s(year)) 8.887467248e-2
#> 7 s(spei_12m).1 -2.093817356e-5
#> 8 s(spei_12m).2 -1.924424663e-5
#> 9 s(spei_12m).3 -2.352387929e-6
#> 10 s(spei_12m).4 -1.394401073e-5
#> 11 s(spei_12m).5 -5.400803529e-6
#> 12 s(spei_12m).6 1.367789370e-5
#> 13 s(spei_12m).7 -5.960023198e-6
#> 14 s(spei_12m).8 8.604957169e-5
#> 15 s(spei_12m).9 3.599888068e-2
#> 16 s(gini_index).1 -1.443460257e-1
#> 17 s(gini_index).2 -9.533088378e-2
#> 18 s(gini_index).3 3.897969820e-2
#> 19 s(gini_index).4 5.218344086e-2
#> 20 s(gini_index).5 3.607275203e-2
#> 21 s(gini_index).6 5.966654807e-2
#> 22 s(gini_index).7 1.584341641e-2
#> 23 s(gini_index).8 -4.318492323e-1
#> 24 s(gini_index).9 2.013451624e-1
#> 25 s(gdp_per_capita).1 -6.675152206e-1
#> 26 s(gdp_per_capita).2 2.370273175e+0
#> 27 s(gdp_per_capita).3 -3.366053163e-1
#> 28 s(gdp_per_capita).4 -1.718857064e+0
#> 29 s(gdp_per_capita).5 8.687900691e-1
#> 30 s(gdp_per_capita).6 1.144460283e+0
#> 31 s(gdp_per_capita).7 9.419116715e-1
#> 32 s(gdp_per_capita).8 -2.010040213e+0
#> 33 s(gdp_per_capita).9 -4.108993088e-1
#> 34 s(year).1 -5.898033825e-2
#> 35 s(year).2 1.628631675e-1
#> 36 s(year).3 2.847954098e-1
#> 37 s(year).4 -2.873995244e-1
#> 38 s(year).5 -3.848686253e-2
#> 39 s(year).6 -8.236453647e-2
#> 40 s(year).7 -6.634186255e-2
#> 41 s(year).8 4.632190442e-1
#> 42 s(year).9 4.225675550e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 6.018316380e-23 0.5761405221 0.07611800630 0.3621822964
#> 2 observed 6.018316380e-23 0.5414997969 0.05199945624 0.3388508553
#> 3 estimate 6.018316380e-23 0.4736086041 0.04868857031 0.06453532138
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.198)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.223472325 0.004068594 -546.4964 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.580721 5.684681 20.54131 0.0015191 **
#> s(gini_index) 7.552575 8.500302 1651.13276 < 2.22e-16 ***
#> s(gdp_per_capita) 8.606992 8.949712 398.04358 < 2.22e-16 ***
#> s(year) 7.950739 8.699337 267.97736 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0054 Deviance explained = 9.02%
#> -REML = -41923 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.969102766e+1
#> 2 logLik 4.200357481e+4
#> 3 AIC -8.394154322e+4
#> 4 BIC -8.367004423e+4
#> 5 deviance 2.914830302e+4
#> 6 df.residual 2.901530897e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -5.396796153e-3
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.881688874e-2
#> 2 mean((Intercept)) -2.223472325e+0
#> 3 mean(s(spei_12m)) 2.079908558e-2
#> 4 mean(s(gini_index)) 1.064474813e-1
#> 5 mean(s(gdp_per_capita)) -5.937331299e-2
#> 6 mean(s(year)) 1.018209063e-1
#> 7 s(spei_12m).1 5.666503089e-2
#> 8 s(spei_12m).2 2.366081899e-2
#> 9 s(spei_12m).3 2.975570787e-2
#> 10 s(spei_12m).4 1.106682622e-2
#> 11 s(spei_12m).5 -1.254945517e-3
#> 12 s(spei_12m).6 5.162226884e-3
#> 13 s(spei_12m).7 -3.296965317e-3
#> 14 s(spei_12m).8 -1.433971864e-2
#> 15 s(spei_12m).9 7.977278887e-2
#> 16 s(gini_index).1 1.625756326e-1
#> 17 s(gini_index).2 -8.927697661e-2
#> 18 s(gini_index).3 -4.597450110e-2
#> 19 s(gini_index).4 6.911505579e-3
#> 20 s(gini_index).5 1.151900582e-2
#> 21 s(gini_index).6 -3.104878047e-3
#> 22 s(gini_index).7 3.033182170e-2
#> 23 s(gini_index).8 5.106338533e-1
#> 24 s(gini_index).9 3.744118682e-1
#> 25 s(gdp_per_capita).1 -8.424019207e-1
#> 26 s(gdp_per_capita).2 3.762018674e+0
#> 27 s(gdp_per_capita).3 -8.954713629e-1
#> 28 s(gdp_per_capita).4 1.791474455e+0
#> 29 s(gdp_per_capita).5 4.240802344e-2
#> 30 s(gdp_per_capita).6 -2.036836416e+0
#> 31 s(gdp_per_capita).7 -1.320766438e+0
#> 32 s(gdp_per_capita).8 -6.862104988e-1
#> 33 s(gdp_per_capita).9 -3.485743325e-1
#> 34 s(year).1 -2.931261263e-2
#> 35 s(year).2 4.257582418e-1
#> 36 s(year).3 2.400639037e-1
#> 37 s(year).4 -4.010987508e-1
#> 38 s(year).5 -3.571963203e-2
#> 39 s(year).6 -1.569960831e-1
#> 40 s(year).7 -1.157625565e-1
#> 41 s(year).8 7.567311511e-1
#> 42 s(year).9 2.327244953e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 4.416008270e-24 0.4360888285 0.01511824469 0.2789251867
#> 2 observed 4.416008270e-24 0.1756918946 0.01383392847 0.2646467725
#> 3 estimate 4.416008270e-24 0.3105041066 0.01025400490 0.03886406860
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(35.833)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.792695244 0.003359515 -533.6173 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.444250 8.915436 83.26847 < 2.22e-16 ***
#> s(gini_index) 5.806227 7.013244 901.56623 < 2.22e-16 ***
#> s(gdp_per_capita) 8.831283 8.991069 385.20948 < 2.22e-16 ***
#> s(year) 6.729683 7.785974 71.93643 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.113 Deviance explained = 10.8%
#> -REML = -27483 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.127066170e-1 weak cohen1988
#> 2 SE 4.177615315e-3 <NA> <NA>
#> 3 Lower CI 1.045186414e-1 weak cohen1988
#> 4 Upper CI 1.208945925e-1 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.081144262e+1
#> 2 logLik 2.757065233e+4
#> 3 AIC -5.507221176e+4
#> 4 BIC -5.480162017e+4
#> 5 deviance 1.819949563e+4
#> 6 df.residual 1.860218856e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 1.127066170e-1
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.654796937e-1
#> 2 mean((Intercept)) -1.792695244e+0
#> 3 mean(s(spei_12m)) -3.617529624e-2
#> 4 mean(s(gini_index)) 1.078593726e-2
#> 5 mean(s(gdp_per_capita)) -4.947698835e-1
#> 6 mean(s(year)) 3.904219548e-2
#> 7 s(spei_12m).1 -8.057848735e-2
#> 8 s(spei_12m).2 -1.317406854e-1
#> 9 s(spei_12m).3 5.644587955e-2
#> 10 s(spei_12m).4 -1.543562045e-1
#> 11 s(spei_12m).5 7.697780080e-2
#> 12 s(spei_12m).6 -1.082296481e-1
#> 13 s(spei_12m).7 1.413339448e-1
#> 14 s(spei_12m).8 -3.967795179e-1
#> 15 s(spei_12m).9 2.713492520e-1
#> 16 s(gini_index).1 -4.237426050e-2
#> 17 s(gini_index).2 5.147366513e-3
#> 18 s(gini_index).3 2.792763686e-3
#> 19 s(gini_index).4 1.582936648e-2
#> 20 s(gini_index).5 -4.475130023e-3
#> 21 s(gini_index).6 -5.440228862e-3
#> 22 s(gini_index).7 2.628567804e-3
#> 23 s(gini_index).8 8.094244095e-2
#> 24 s(gini_index).9 4.202254928e-2
#> 25 s(gdp_per_capita).1 7.358709918e-1
#> 26 s(gdp_per_capita).2 2.978580378e+0
#> 27 s(gdp_per_capita).3 -1.276524065e+0
#> 28 s(gdp_per_capita).4 -2.150693107e+0
#> 29 s(gdp_per_capita).5 5.790580735e-1
#> 30 s(gdp_per_capita).6 -2.034475741e+0
#> 31 s(gdp_per_capita).7 -1.349530161e+0
#> 32 s(gdp_per_capita).8 -1.581393559e+0
#> 33 s(gdp_per_capita).9 -3.538217627e-1
#> 34 s(year).1 -2.507636695e-2
#> 35 s(year).2 2.170644443e-1
#> 36 s(year).3 9.218674646e-2
#> 37 s(year).4 -1.754727765e-1
#> 38 s(year).5 -8.932512031e-3
#> 39 s(year).6 -5.426776850e-2
#> 40 s(year).7 -3.954110912e-2
#> 41 s(year).8 2.537703826e-1
#> 42 s(year).9 9.164871903e-2
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.637050883e-21 0.8426469523 0.03550855298 0.5330944727
#> 2 observed 2.637050883e-21 0.3932285379 0.03327152924 0.5269628893
#> 3 estimate 2.637050883e-21 0.6978053901 0.02633734989 0.05260443087
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(27.938)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.279180283 0.008828889 -144.8858 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.004514 1.009012 7.51582 0.0062855 **
#> s(gini_index) 3.223456 4.083940 118.60448 < 2.22e-16 ***
#> s(gdp_per_capita) 8.037661 8.735704 246.81382 < 2.22e-16 ***
#> s(year) 1.000164 1.000327 0.50660 0.4767646
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.18 Deviance explained = 17.5%
#> -REML = -2957.3 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0.1802743753 moderate cohen1988
#> 2 SE 0.01319489585 <NA> <NA>
#> 3 Lower CI 0.1544128546 moderate cohen1988
#> 4 Upper CI 0.2061358959 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.426579469e+1
#> 2 logLik 2.996752550e+3
#> 3 AIC -5.959847137e+3
#> 4 BIC -5.861580499e+3
#> 5 deviance 2.464535338e+3
#> 6 df.residual 2.523734205e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 1.802743753e-1
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.497960809e-1
#> 2 mean((Intercept)) -1.279180283e+0
#> 3 mean(s(spei_12m)) 2.906739583e-3
#> 4 mean(s(gini_index)) -2.291235448e-2
#> 5 mean(s(gdp_per_capita)) -8.656923664e-1
#> 6 mean(s(year)) 8.896803235e-4
#> 7 s(spei_12m).1 -4.291904292e-5
#> 8 s(spei_12m).2 1.537382490e-5
#> 9 s(spei_12m).3 -7.265770598e-7
#> 10 s(spei_12m).4 -1.165336086e-6
#> 11 s(spei_12m).5 -3.068578689e-6
#> 12 s(spei_12m).6 3.588602863e-6
#> 13 s(spei_12m).7 5.243951699e-8
#> 14 s(spei_12m).8 2.592332269e-5
#> 15 s(spei_12m).9 2.616359760e-2
#> 16 s(gini_index).1 -4.065301628e-2
#> 17 s(gini_index).2 -4.662534265e-2
#> 18 s(gini_index).3 -1.051659004e-2
#> 19 s(gini_index).4 -1.686131491e-2
#> 20 s(gini_index).5 -6.410104021e-3
#> 21 s(gini_index).6 -1.842838625e-2
#> 22 s(gini_index).7 -1.318860303e-3
#> 23 s(gini_index).8 -1.280484242e-1
#> 24 s(gini_index).9 6.265084834e-2
#> 25 s(gdp_per_capita).1 6.447688502e-1
#> 26 s(gdp_per_capita).2 -5.200019304e+0
#> 27 s(gdp_per_capita).3 1.092288010e-1
#> 28 s(gdp_per_capita).4 -3.295364863e+0
#> 29 s(gdp_per_capita).5 6.352279295e-1
#> 30 s(gdp_per_capita).6 2.406589613e+0
#> 31 s(gdp_per_capita).7 -1.527402683e+0
#> 32 s(gdp_per_capita).8 -9.171303174e-1
#> 33 s(gdp_per_capita).9 -6.471293236e-1
#> 34 s(year).1 2.883535455e-7
#> 35 s(year).2 -2.787778174e-7
#> 36 s(year).3 7.755783821e-8
#> 37 s(year).4 4.112403855e-8
#> 38 s(year).5 1.492531608e-8
#> 39 s(year).6 2.337766431e-7
#> 40 s(year).7 8.975575541e-8
#> 41 s(year).8 -1.228747909e-6
#> 42 s(year).9 8.007884944e-3
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.858430707e-25 0.5727624185 0.04204433397 0.4205494060
#> 2 observed 3.858430707e-25 0.5496223602 0.01954065894 0.3603385144
#> 3 estimate 3.858430707e-25 0.4276408768 0.01993345190 0.04098973891
#> # ℹ 1 more variable: `s(year)` <dbl>
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_beipr_gam_2_by_misfs,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_2_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_gam_2_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(maper ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(maper_gam_2_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.436)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.55372323 0.01011614 -351.2923 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.113080 5.154101 14.64520 0.01365674 *
#> s(gini_index) 8.581226 8.948759 345.40318 < 2.22e-16 ***
#> s(gdp_per_capita) 4.615878 5.662645 26.60202 0.00013376 ***
#> s(year) 5.254940 6.368155 61.50738 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0256 Deviance explained = 6.73%
#> -REML = -19240 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.356512451e+1
#> 2 logLik 1.929784544e+4
#> 3 AIC -3.853942357e+4
#> 4 BIC -3.834553626e+4
#> 5 deviance 7.671577595e+3
#> 6 df.residual 7.247434875e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared -2.559198136e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.106539449e-1
#> 2 mean((Intercept)) -3.553723228e+0
#> 3 mean(s(spei_12m)) 3.445938870e-2
#> 4 mean(s(gini_index)) -7.109274045e-2
#> 5 mean(s(gdp_per_capita)) -7.195954761e-2
#> 6 mean(s(year)) 4.854037343e-2
#> 7 s(spei_12m).1 1.649015908e-1
#> 8 s(spei_12m).2 -5.928211332e-2
#> 9 s(spei_12m).3 -2.104444590e-3
#> 10 s(spei_12m).4 -2.237539723e-2
#> 11 s(spei_12m).5 -1.988072645e-2
#> 12 s(spei_12m).6 2.249579585e-2
#> 13 s(spei_12m).7 -1.485979187e-2
#> 14 s(spei_12m).8 9.519931804e-2
#> 15 s(spei_12m).9 1.460402671e-1
#> 16 s(gini_index).1 -4.837605086e-1
#> 17 s(gini_index).2 -9.506421908e-2
#> 18 s(gini_index).3 -1.098176705e-1
#> 19 s(gini_index).4 7.584729884e-2
#> 20 s(gini_index).5 -1.694673073e-1
#> 21 s(gini_index).6 9.863693737e-2
#> 22 s(gini_index).7 -3.324018690e-1
#> 23 s(gini_index).8 -8.737856344e-1
#> 24 s(gini_index).9 1.249978309e+0
#> 25 s(gdp_per_capita).1 -4.367425630e-1
#> 26 s(gdp_per_capita).2 1.075437347e+0
#> 27 s(gdp_per_capita).3 -1.657026658e-1
#> 28 s(gdp_per_capita).4 -6.454054222e-1
#> 29 s(gdp_per_capita).5 4.687865302e-1
#> 30 s(gdp_per_capita).6 5.571571512e-1
#> 31 s(gdp_per_capita).7 4.982885217e-1
#> 32 s(gdp_per_capita).8 -2.002683890e+0
#> 33 s(gdp_per_capita).9 3.229062085e-3
#> 34 s(year).1 1.130700078e-1
#> 35 s(year).2 2.444487318e-1
#> 36 s(year).3 -1.923785560e-2
#> 37 s(year).4 -1.229935964e-1
#> 38 s(year).5 -1.557627039e-2
#> 39 s(year).6 -4.784526508e-2
#> 40 s(year).7 -4.160383741e-2
#> 41 s(year).8 4.191197780e-1
#> 42 s(year).9 -9.251833185e-2
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 6.018316380e-23 0.5761405221 0.07611800630 0.3621822964
#> 2 observed 6.018316380e-23 0.4316980359 0.04048267056 0.2457249655
#> 3 estimate 6.018316380e-23 0.4736086041 0.04868857031 0.06453532138
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(26.317)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -4.001505562 0.005376465 -744.2632 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.210939 8.836300 236.7607 < 2.22e-16 ***
#> s(gini_index) 8.077608 8.784498 1651.9376 < 2.22e-16 ***
#> s(gdp_per_capita) 8.756783 8.980268 716.4921 < 2.22e-16 ***
#> s(year) 8.389551 8.893945 449.1530 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.00366 Deviance explained = 10.2%
#> -REML = -97297 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.663588781e-3 very weak (negligible) cohen1988
#> 2 SE 6.769210032e-4 <NA> <NA>
#> 3 Lower CI 2.336847995e-3 very weak (negligible) cohen1988
#> 4 Upper CI 4.990329568e-3 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.443488098e+1
#> 2 logLik 9.739538595e+4
#> 3 AIC -1.947157819e+5
#> 4 BIC -1.944054506e+5
#> 5 deviance 3.094525714e+4
#> 6 df.residual 2.901056512e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared 3.663588781e-3
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.745737202e-1
#> 2 mean((Intercept)) -4.001505562e+0
#> 3 mean(s(spei_12m)) -1.925856788e-2
#> 4 mean(s(gini_index)) -2.326698830e-1
#> 5 mean(s(gdp_per_capita)) -1.592239957e-1
#> 6 mean(s(year)) 1.380722149e-1
#> 7 s(spei_12m).1 1.586183047e-1
#> 8 s(spei_12m).2 -2.292014611e-1
#> 9 s(spei_12m).3 1.118733668e-1
#> 10 s(spei_12m).4 3.024565661e-1
#> 11 s(spei_12m).5 -9.777801210e-2
#> 12 s(spei_12m).6 3.324546425e-1
#> 13 s(spei_12m).7 -1.362083220e-1
#> 14 s(spei_12m).8 -7.638556477e-1
#> 15 s(spei_12m).9 1.483134520e-1
#> 16 s(gini_index).1 2.380566368e-1
#> 17 s(gini_index).2 4.706366685e-1
#> 18 s(gini_index).3 -2.438446598e-1
#> 19 s(gini_index).4 -2.041981228e-1
#> 20 s(gini_index).5 -2.317090611e-1
#> 21 s(gini_index).6 1.380387019e-1
#> 22 s(gini_index).7 -1.751966133e-1
#> 23 s(gini_index).8 -2.524826481e+0
#> 24 s(gini_index).9 4.390139838e-1
#> 25 s(gdp_per_capita).1 -1.868333716e+0
#> 26 s(gdp_per_capita).2 6.667845459e+0
#> 27 s(gdp_per_capita).3 -1.709985136e+0
#> 28 s(gdp_per_capita).4 4.421859225e+0
#> 29 s(gdp_per_capita).5 9.942565347e-2
#> 30 s(gdp_per_capita).6 -3.844612138e+0
#> 31 s(gdp_per_capita).7 -2.457071709e+0
#> 32 s(gdp_per_capita).8 -2.132570497e+0
#> 33 s(gdp_per_capita).9 -6.095731039e-1
#> 34 s(year).1 9.793529391e-2
#> 35 s(year).2 5.651348794e-1
#> 36 s(year).3 2.393304510e-1
#> 37 s(year).4 -4.294250522e-1
#> 38 s(year).5 -1.045097771e-1
#> 39 s(year).6 -8.301186806e-2
#> 40 s(year).7 -1.454583117e-1
#> 41 s(year).8 8.954133844e-1
#> 42 s(year).9 2.072409342e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 4.416008270e-24 0.4360888285 0.01511824469 0.2789251867
#> 2 observed 4.416008270e-24 0.2401821782 0.01323209222 0.2668620292
#> 3 estimate 4.416008270e-24 0.3105041066 0.01025400490 0.03886406860
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(55.804)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.424445506 0.004881016 -701.5845 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.161619 8.229169 80.32860 < 2.22e-16 ***
#> s(gini_index) 6.889101 7.986024 572.69175 < 2.22e-16 ***
#> s(gdp_per_capita) 7.018473 8.074307 40.16179 < 2.22e-16 ***
#> s(year) 8.490436 8.916492 150.50445 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0177 Deviance explained = 5.66%
#> -REML = -47449 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.768102117e-2 very weak (negligible) cohen1988
#> 2 SE 1.831861788e-3 <NA> <NA>
#> 3 Lower CI 1.409063804e-2 very weak (negligible) cohen1988
#> 4 Upper CI 2.127140430e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.055962913e+1
#> 2 logLik 4.752765979e+4
#> 3 AIC -9.498587505e+4
#> 4 BIC -9.471390632e+4
#> 5 deviance 1.836576587e+4
#> 6 df.residual 1.860244037e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 1.768102117e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -7.527115987e-2
#> 2 mean((Intercept)) -3.424445506e+0
#> 3 mean(s(spei_12m)) -2.311479480e-2
#> 4 mean(s(gini_index)) 1.138726038e-1
#> 5 mean(s(gdp_per_capita)) -9.749392801e-2
#> 6 mean(s(year)) 7.778196237e-2
#> 7 s(spei_12m).1 -4.460129638e-2
#> 8 s(spei_12m).2 -1.197672351e-1
#> 9 s(spei_12m).3 1.162018281e-1
#> 10 s(spei_12m).4 -1.166797649e-1
#> 11 s(spei_12m).5 8.747829230e-2
#> 12 s(spei_12m).6 -8.129209915e-2
#> 13 s(spei_12m).7 1.355109826e-2
#> 14 s(spei_12m).8 -2.303867616e-1
#> 15 s(spei_12m).9 1.674627853e-1
#> 16 s(gini_index).1 1.044786458e-1
#> 17 s(gini_index).2 -1.349250789e-1
#> 18 s(gini_index).3 2.944760076e-2
#> 19 s(gini_index).4 -4.589490159e-2
#> 20 s(gini_index).5 -1.428876056e-2
#> 21 s(gini_index).6 2.450839515e-2
#> 22 s(gini_index).7 6.145810385e-3
#> 23 s(gini_index).8 7.264780518e-1
#> 24 s(gini_index).9 3.289036716e-1
#> 25 s(gdp_per_capita).1 2.068528477e-1
#> 26 s(gdp_per_capita).2 1.164618613e+0
#> 27 s(gdp_per_capita).3 -4.138210578e-1
#> 28 s(gdp_per_capita).4 -7.307624695e-1
#> 29 s(gdp_per_capita).5 1.922035749e-1
#> 30 s(gdp_per_capita).6 -3.681403569e-1
#> 31 s(gdp_per_capita).7 -4.023220024e-1
#> 32 s(gdp_per_capita).8 -4.073524458e-1
#> 33 s(gdp_per_capita).9 -1.187220553e-1
#> 34 s(year).1 -1.095087764e-1
#> 35 s(year).2 1.467518568e-1
#> 36 s(year).3 1.959990191e-1
#> 37 s(year).4 4.961799740e-2
#> 38 s(year).5 -7.192713394e-2
#> 39 s(year).6 1.439371312e-1
#> 40 s(year).7 -8.576111164e-2
#> 41 s(year).8 1.273731022e-1
#> 42 s(year).9 3.035555766e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.637050883e-21 0.8426469523 0.03550855298 0.5330944727
#> 2 observed 2.637050883e-21 0.3644542805 0.02825186336 0.4581028538
#> 3 estimate 2.637050883e-21 0.6978053901 0.02633734989 0.05260443087
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(90.823)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.53297521 0.01140356 -309.8134 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.008800 1.017394 0.85717 0.35871450
#> s(gini_index) 2.311721 2.953696 20.22636 0.00014603 ***
#> s(gdp_per_capita) 1.932969 2.385962 17.28336 0.00035302 ***
#> s(year) 4.127904 5.101936 34.95994 0.0000024976 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.029 Deviance explained = 3.91%
#> -REML = -7007.1 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.902683092e-2 weak cohen1988
#> 2 SE 6.271587655e-3 <NA> <NA>
#> 3 Lower CI 1.673474499e-2 very weak (negligible) cohen1988
#> 4 Upper CI 4.131891685e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.038139459e+1
#> 2 logLik 7.032652920e+3
#> 3 AIC -1.403838786e+4
#> 4 BIC -1.395979906e+4
#> 5 deviance 2.478416827e+3
#> 6 df.residual 2.527618605e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 2.902683092e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.074071773e-1
#> 2 mean((Intercept)) -3.532975214e+0
#> 3 mean(s(spei_12m)) 1.445538749e-3
#> 4 mean(s(gini_index)) -1.572054810e-2
#> 5 mean(s(gdp_per_capita)) -4.594037210e-2
#> 6 mean(s(year)) 1.120534306e-2
#> 7 s(spei_12m).1 -5.246191870e-5
#> 8 s(spei_12m).2 7.911560782e-5
#> 9 s(spei_12m).3 -6.546630252e-6
#> 10 s(spei_12m).4 -2.099433823e-5
#> 11 s(spei_12m).5 -4.311465908e-6
#> 12 s(spei_12m).6 2.053736876e-5
#> 13 s(spei_12m).7 5.090792195e-6
#> 14 s(spei_12m).8 1.111326723e-4
#> 15 s(spei_12m).9 1.287828666e-2
#> 16 s(gini_index).1 -1.692034737e-2
#> 17 s(gini_index).2 -2.571074331e-2
#> 18 s(gini_index).3 -1.813728614e-4
#> 19 s(gini_index).4 -5.284963237e-3
#> 20 s(gini_index).5 1.475779983e-5
#> 21 s(gini_index).6 -4.347145058e-3
#> 22 s(gini_index).7 -2.853251551e-5
#> 23 s(gini_index).8 -1.959840935e-2
#> 24 s(gini_index).9 -6.942817699e-2
#> 25 s(gdp_per_capita).1 3.175399357e-2
#> 26 s(gdp_per_capita).2 -3.683384558e-2
#> 27 s(gdp_per_capita).3 -3.958986926e-2
#> 28 s(gdp_per_capita).4 -6.000206771e-2
#> 29 s(gdp_per_capita).5 3.210002181e-2
#> 30 s(gdp_per_capita).6 5.636466360e-2
#> 31 s(gdp_per_capita).7 -5.455418944e-2
#> 32 s(gdp_per_capita).8 -2.985064154e-1
#> 33 s(gdp_per_capita).9 -4.419564048e-2
#> 34 s(year).1 1.461104942e-1
#> 35 s(year).2 2.195879142e-2
#> 36 s(year).3 4.034004192e-2
#> 37 s(year).4 -4.162116379e-2
#> 38 s(year).5 -2.101659377e-2
#> 39 s(year).6 -1.793355690e-2
#> 40 s(year).7 -1.119086450e-2
#> 41 s(year).8 1.277835373e-1
#> 42 s(year).9 -1.435825983e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.858430707e-25 0.5727624185 0.04204433397 0.4205494060
#> 2 observed 3.858430707e-25 0.5496907770 0.01758235337 0.1177282312
#> 3 estimate 3.858430707e-25 0.4276408768 0.01993345190 0.04098973891
#> # ℹ 1 more variable: `s(year)` <dbl>
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_gam_2_by_misfs,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER"
)
maper_gam_2_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mpepr_gam_2_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(mpepr_gam_2_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(33.486)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.434856604 0.009225496 -372.3222 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.165144 5.223105 18.19919 0.0032841 **
#> s(gini_index) 6.712438 7.839625 206.09680 < 2.22e-16 ***
#> s(gdp_per_capita) 7.373456 8.340552 77.66143 < 2.22e-16 ***
#> s(year) 6.445394 7.601074 144.55994 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0463 Deviance explained = 7.01%
#> -REML = -18024 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.569643256e+1
#> 2 logLik 1.808331196e+4
#> 3 AIC -3.610461521e+4
#> 4 BIC -3.589094407e+4
#> 5 deviance 7.667142034e+3
#> 6 df.residual 7.245303567e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared -4.629109189e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.494413062e-2
#> 2 mean((Intercept)) -3.434856604e+0
#> 3 mean(s(spei_12m)) 1.964062625e-2
#> 4 mean(s(gini_index)) 1.232521861e-1
#> 5 mean(s(gdp_per_capita)) 5.601046968e-2
#> 6 mean(s(year)) 3.908824802e-2
#> 7 s(spei_12m).1 1.361697653e-1
#> 8 s(spei_12m).2 1.715062814e-3
#> 9 s(spei_12m).3 5.489769184e-3
#> 10 s(spei_12m).4 1.360244836e-3
#> 11 s(spei_12m).5 -1.164418587e-2
#> 12 s(spei_12m).6 -9.359979648e-3
#> 13 s(spei_12m).7 5.169578044e-3
#> 14 s(spei_12m).8 -6.561587627e-2
#> 15 s(spei_12m).9 1.134812579e-1
#> 16 s(gini_index).1 -8.564231171e-2
#> 17 s(gini_index).2 2.694956733e-1
#> 18 s(gini_index).3 4.072328006e-2
#> 19 s(gini_index).4 -1.478197531e-1
#> 20 s(gini_index).5 -4.121173320e-2
#> 21 s(gini_index).6 -9.455594074e-2
#> 22 s(gini_index).7 -6.697722938e-2
#> 23 s(gini_index).8 9.618259727e-1
#> 24 s(gini_index).9 2.734317174e-1
#> 25 s(gdp_per_capita).1 -3.526411690e-1
#> 26 s(gdp_per_capita).2 1.439788439e+0
#> 27 s(gdp_per_capita).3 -1.932460723e-1
#> 28 s(gdp_per_capita).4 -9.456433763e-1
#> 29 s(gdp_per_capita).5 5.484758744e-1
#> 30 s(gdp_per_capita).6 7.725993345e-1
#> 31 s(gdp_per_capita).7 5.242949569e-1
#> 32 s(gdp_per_capita).8 -9.633720077e-1
#> 33 s(gdp_per_capita).9 -3.261617526e-1
#> 34 s(year).1 2.134698595e-1
#> 35 s(year).2 3.621564177e-1
#> 36 s(year).3 -1.526613940e-1
#> 37 s(year).4 -9.195351450e-2
#> 38 s(year).5 3.818738853e-2
#> 39 s(year).6 -8.565398833e-2
#> 40 s(year).7 -7.452982589e-2
#> 41 s(year).8 4.728942259e-1
#> 42 s(year).9 -3.301149368e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 6.018316380e-23 0.5761405221 0.07611800630 0.3621822964
#> 2 observed 6.018316380e-23 0.5003118419 0.03604859644 0.3455076705
#> 3 estimate 6.018316380e-23 0.4736086041 0.04868857031 0.06453532138
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(30.017)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.787295147 0.005091077 -743.9084 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.705871 8.975143 334.3871 < 2.22e-16 ***
#> s(gini_index) 7.818827 8.657748 1926.6325 < 2.22e-16 ***
#> s(gdp_per_capita) 8.791225 8.985325 780.0611 < 2.22e-16 ***
#> s(year) 8.100767 8.782282 604.5306 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0117 Deviance explained = 12.3%
#> -REML = -85060 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.441669034e+1
#> 2 logLik 8.515993299e+4
#> 3 AIC -1.702450650e+5
#> 4 BIC -1.699355160e+5
#> 5 deviance 3.165452107e+4
#> 6 df.residual 2.901058331e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -1.165001197e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.582608370e-1
#> 2 mean((Intercept)) -3.787295147e+0
#> 3 mean(s(spei_12m)) -4.457326608e-2
#> 4 mean(s(gini_index)) -1.586575402e-1
#> 5 mean(s(gdp_per_capita)) -1.886307554e-1
#> 6 mean(s(year)) 1.620442482e-1
#> 7 s(spei_12m).1 2.841394667e-1
#> 8 s(spei_12m).2 -5.391838031e-1
#> 9 s(spei_12m).3 2.627270061e-1
#> 10 s(spei_12m).4 5.133005645e-1
#> 11 s(spei_12m).5 -1.461767298e-1
#> 12 s(spei_12m).6 5.768797573e-1
#> 13 s(spei_12m).7 -3.161925924e-1
#> 14 s(spei_12m).8 -1.438436340e+0
#> 15 s(spei_12m).9 4.017832758e-1
#> 16 s(gini_index).1 1.440479654e-1
#> 17 s(gini_index).2 4.038848698e-1
#> 18 s(gini_index).3 -1.244612017e-1
#> 19 s(gini_index).4 -1.532931167e-1
#> 20 s(gini_index).5 -1.591211639e-1
#> 21 s(gini_index).6 9.622253580e-2
#> 22 s(gini_index).7 -1.173343648e-1
#> 23 s(gini_index).8 -1.771926835e+0
#> 24 s(gini_index).9 2.540634492e-1
#> 25 s(gdp_per_capita).1 -1.886843793e+0
#> 26 s(gdp_per_capita).2 6.554054442e+0
#> 27 s(gdp_per_capita).3 -1.785521637e+0
#> 28 s(gdp_per_capita).4 4.574095945e+0
#> 29 s(gdp_per_capita).5 9.837035612e-2
#> 30 s(gdp_per_capita).6 -3.978723586e+0
#> 31 s(gdp_per_capita).7 -2.473079565e+0
#> 32 s(gdp_per_capita).8 -2.194704818e+0
#> 33 s(gdp_per_capita).9 -6.053241430e-1
#> 34 s(year).1 1.360579485e-1
#> 35 s(year).2 7.838635781e-1
#> 36 s(year).3 1.702919485e-1
#> 37 s(year).4 -3.438891934e-1
#> 38 s(year).5 -8.518351732e-2
#> 39 s(year).6 -1.382085520e-1
#> 40 s(year).7 -1.152448862e-1
#> 41 s(year).8 9.163512592e-1
#> 42 s(year).9 1.343596486e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 4.416008270e-24 0.4360888285 0.01511824469 0.2789251867
#> 2 observed 4.416008270e-24 0.1884469727 0.01289371706 0.2635596774
#> 3 estimate 4.416008270e-24 0.3105041066 0.01025400490 0.03886406860
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(97.08)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.345236572 0.003815571 -876.7328 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 6.802120 7.947547 243.0474 < 2.22e-16 ***
#> s(gini_index) 8.118038 8.779012 684.6377 < 2.22e-16 ***
#> s(gdp_per_capita) 8.095966 8.771660 164.5220 < 2.22e-16 ***
#> s(year) 8.515898 8.924000 214.2495 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0411 Deviance explained = 7.92%
#> -REML = -49904 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.108916126e-2 weak cohen1988
#> 2 SE 2.726015760e-3 <NA> <NA>
#> 3 Lower CI 3.574626855e-2 weak cohen1988
#> 4 Upper CI 4.643205397e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.253202212e+1
#> 2 logLik 4.999319384e+4
#> 3 AIC -9.991450445e+4
#> 4 BIC -9.963298493e+4
#> 5 deviance 1.848966195e+4
#> 6 df.residual 1.860046798e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 4.108916126e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.831497942e-2
#> 2 mean((Intercept)) -3.345236572e+0
#> 3 mean(s(spei_12m)) 4.556567363e-2
#> 4 mean(s(gini_index)) 1.435808433e-1
#> 5 mean(s(gdp_per_capita)) -9.842680671e-2
#> 6 mean(s(year)) 1.234561045e-1
#> 7 s(spei_12m).1 -1.379283490e-2
#> 8 s(spei_12m).2 4.393551483e-2
#> 9 s(spei_12m).3 6.541188612e-2
#> 10 s(spei_12m).4 2.327286428e-2
#> 11 s(spei_12m).5 3.768461630e-2
#> 12 s(spei_12m).6 3.608298460e-2
#> 13 s(spei_12m).7 -2.331846887e-3
#> 14 s(spei_12m).8 1.706403278e-1
#> 15 s(spei_12m).9 4.918755053e-2
#> 16 s(gini_index).1 2.040557270e-1
#> 17 s(gini_index).2 -1.755282187e-1
#> 18 s(gini_index).3 6.085929746e-2
#> 19 s(gini_index).4 -5.139256491e-2
#> 20 s(gini_index).5 -2.923984808e-2
#> 21 s(gini_index).6 5.589509610e-2
#> 22 s(gini_index).7 -2.428891148e-2
#> 23 s(gini_index).8 7.260435467e-1
#> 24 s(gini_index).9 5.258234658e-1
#> 25 s(gdp_per_capita).1 2.250277377e-1
#> 26 s(gdp_per_capita).2 1.544888953e+0
#> 27 s(gdp_per_capita).3 -5.717738617e-1
#> 28 s(gdp_per_capita).4 -7.505482659e-1
#> 29 s(gdp_per_capita).5 2.194923592e-1
#> 30 s(gdp_per_capita).6 -6.945598035e-1
#> 31 s(gdp_per_capita).7 -4.637604864e-1
#> 32 s(gdp_per_capita).8 -1.916317577e-1
#> 33 s(gdp_per_capita).9 -2.029761355e-1
#> 34 s(year).1 -1.386036369e-1
#> 35 s(year).2 5.657238111e-1
#> 36 s(year).3 2.270403459e-1
#> 37 s(year).4 -2.246780096e-1
#> 38 s(year).5 7.264059589e-2
#> 39 s(year).6 -6.914501548e-2
#> 40 s(year).7 -1.428020712e-1
#> 41 s(year).8 6.950617426e-1
#> 42 s(year).9 1.258671786e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.637050883e-21 0.8426469523 0.03550855298 0.5330944727
#> 2 observed 2.637050883e-21 0.6451303506 0.02688775665 0.4713195237
#> 3 estimate 2.637050883e-21 0.6978053901 0.02633734989 0.05260443087
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(122.989)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.325421007 0.009246172 -359.6538 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.007548 1.014949 0.15084 0.7086245
#> s(gini_index) 4.878724 6.014189 75.46973 < 2.22e-16 ***
#> s(gdp_per_capita) 3.003962 3.677160 16.85097 0.0017233 **
#> s(year) 3.280415 4.069538 15.10457 0.0049117 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0239 Deviance explained = 5.2%
#> -REML = -6991.8 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.387317808e-2 weak cohen1988
#> 2 SE 5.717837663e-3 <NA> <NA>
#> 3 Lower CI 1.266642219e-2 very weak (negligible) cohen1988
#> 4 Upper CI 3.507993397e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.317064856e+1
#> 2 logLik 7.023495794e+3
#> 3 AIC -1.401343992e+4
#> 4 BIC -1.391548360e+4
#> 5 deviance 2.490328399e+3
#> 6 df.residual 2.524829351e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 2.387317808e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -9.970824520e-2
#> 2 mean((Intercept)) -3.325421007e+0
#> 3 mean(s(spei_12m)) 4.908493579e-4
#> 4 mean(s(gini_index)) -1.593089475e-2
#> 5 mean(s(gdp_per_capita)) -2.883650447e-2
#> 6 mean(s(year)) 3.856098161e-3
#> 7 s(spei_12m).1 -2.611617651e-6
#> 8 s(spei_12m).2 3.962309063e-5
#> 9 s(spei_12m).3 -6.472759894e-6
#> 10 s(spei_12m).4 -2.937876457e-5
#> 11 s(spei_12m).5 -2.404269832e-6
#> 12 s(spei_12m).6 2.667080466e-5
#> 13 s(spei_12m).7 6.470647656e-6
#> 14 s(spei_12m).8 1.703588031e-4
#> 15 s(spei_12m).9 4.215388287e-3
#> 16 s(gini_index).1 -1.042351235e-1
#> 17 s(gini_index).2 -4.591296766e-2
#> 18 s(gini_index).3 2.566487781e-2
#> 19 s(gini_index).4 8.803861077e-3
#> 20 s(gini_index).5 3.162618505e-2
#> 21 s(gini_index).6 7.270185050e-3
#> 22 s(gini_index).7 3.006996708e-3
#> 23 s(gini_index).8 1.153306231e-1
#> 24 s(gini_index).9 -1.849326905e-1
#> 25 s(gdp_per_capita).1 -4.310647188e-2
#> 26 s(gdp_per_capita).2 -9.540324500e-2
#> 27 s(gdp_per_capita).3 5.093162616e-3
#> 28 s(gdp_per_capita).4 -4.972354593e-2
#> 29 s(gdp_per_capita).5 8.768640910e-3
#> 30 s(gdp_per_capita).6 1.658280333e-2
#> 31 s(gdp_per_capita).7 -1.520323204e-2
#> 32 s(gdp_per_capita).8 -2.852245503e-2
#> 33 s(gdp_per_capita).9 -5.801419719e-2
#> 34 s(year).1 4.914947372e-2
#> 35 s(year).2 -7.639088715e-3
#> 36 s(year).3 8.354107799e-3
#> 37 s(year).4 -2.397705052e-2
#> 38 s(year).5 -9.787014025e-3
#> 39 s(year).6 -1.422994620e-2
#> 40 s(year).7 -6.028367962e-3
#> 41 s(year).8 8.654712383e-2
#> 42 s(year).9 -4.768435447e-2
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.858430707e-25 0.5727624185 0.04204433397 0.4205494060
#> 2 observed 3.858430707e-25 0.5498684970 0.01114936125 0.2254475458
#> 3 estimate 3.858430707e-25 0.4276408768 0.01993345190 0.04098973891
#> # ℹ 1 more variable: `s(year)` <dbl>
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mpepr_gam_2_by_misfs,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_2_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_mpepr_gam_2_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(maper_mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) + s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(maper_mpepr_gam_2_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.099)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.754435921 0.008411639 -327.4553 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.672689 5.817499 33.61398 0.0000073993 ***
#> s(gini_index) 8.107389 8.783806 169.54162 < 2.22e-16 ***
#> s(gdp_per_capita) 7.221601 8.228600 92.36727 < 2.22e-16 ***
#> s(year) 6.820652 7.932548 90.60290 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0106 Deviance explained = 6.34%
#> -REML = -13623 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.782233197e+1
#> 2 logLik 1.368997982e+4
#> 3 AIC -2.731443474e+4
#> 4 BIC -2.708864741e+4
#> 5 deviance 7.314057274e+3
#> 6 df.residual 7.243177668e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared -1.056645647e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -5.007228067e-2
#> 2 mean((Intercept)) -2.754435921e+0
#> 3 mean(s(spei_12m)) 3.206410280e-2
#> 4 mean(s(gini_index)) 1.142572710e-1
#> 5 mean(s(gdp_per_capita)) -4.883316071e-2
#> 6 mean(s(year)) 2.707513105e-3
#> 7 s(spei_12m).1 1.760832329e-1
#> 8 s(spei_12m).2 -1.524371506e-2
#> 9 s(spei_12m).3 2.015529933e-2
#> 10 s(spei_12m).4 -8.265319084e-3
#> 11 s(spei_12m).5 -1.058832496e-2
#> 12 s(spei_12m).6 3.152072111e-3
#> 13 s(spei_12m).7 -4.670031387e-3
#> 14 s(spei_12m).8 2.469860923e-2
#> 15 s(spei_12m).9 1.032551021e-1
#> 16 s(gini_index).1 -2.524632676e-1
#> 17 s(gini_index).2 3.249365828e-1
#> 18 s(gini_index).3 -2.583286725e-2
#> 19 s(gini_index).4 -1.609615306e-1
#> 20 s(gini_index).5 -1.226457370e-1
#> 21 s(gini_index).6 -1.281554470e-1
#> 22 s(gini_index).7 -1.532815129e-1
#> 23 s(gini_index).8 8.518538032e-1
#> 24 s(gini_index).9 6.948654156e-1
#> 25 s(gdp_per_capita).1 -5.465292568e-1
#> 26 s(gdp_per_capita).2 1.590548451e+0
#> 27 s(gdp_per_capita).3 -2.207406118e-1
#> 28 s(gdp_per_capita).4 -1.220619152e+0
#> 29 s(gdp_per_capita).5 7.028827997e-1
#> 30 s(gdp_per_capita).6 9.063363849e-1
#> 31 s(gdp_per_capita).7 7.439170928e-1
#> 32 s(gdp_per_capita).8 -2.213091538e+0
#> 33 s(gdp_per_capita).9 -1.822026151e-1
#> 34 s(year).1 1.652308618e-1
#> 35 s(year).2 1.630562540e-1
#> 36 s(year).3 -1.822994781e-1
#> 37 s(year).4 -5.347137516e-2
#> 38 s(year).5 1.440633184e-2
#> 39 s(year).6 1.923467541e-2
#> 40 s(year).7 -5.066330062e-2
#> 41 s(year).8 2.662287697e-1
#> 42 s(year).9 -3.173551209e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 6.018316380e-23 0.5761405221 0.07611800630 0.3621822964
#> 2 observed 6.018316380e-23 0.5049675190 0.02906446008 0.3131364400
#> 3 estimate 6.018316380e-23 0.4736086041 0.04868857031 0.06453532138
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(21.296)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.172234215 0.004886527 -649.1798 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.678425 8.970716 277.2088 < 2.22e-16 ***
#> s(gini_index) 8.069006 8.779763 1780.7193 < 2.22e-16 ***
#> s(gdp_per_capita) 8.826432 8.989826 1053.8210 < 2.22e-16 ***
#> s(year) 8.390146 8.895002 584.1082 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0104 Deviance explained = 12.6%
#> -REML = -65588 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.044675105e-2 very weak (negligible) cohen1988
#> 2 SE 1.135294200e-3 <NA> <NA>
#> 3 Lower CI 8.221615305e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.267188679e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.496400951e+1
#> 2 logLik 6.569251257e+4
#> 3 AIC -1.313097545e+5
#> 4 BIC -1.309982621e+5
#> 5 deviance 3.083323622e+4
#> 6 df.residual 2.901003599e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared 1.044675105e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.476114771e-1
#> 2 mean((Intercept)) -3.172234215e+0
#> 3 mean(s(spei_12m)) -1.702305315e-2
#> 4 mean(s(gini_index)) -1.817748664e-1
#> 5 mean(s(gdp_per_capita)) -2.096481819e-1
#> 6 mean(s(year)) 1.540693859e-1
#> 7 s(spei_12m).1 2.250014407e-1
#> 8 s(spei_12m).2 -3.405513696e-1
#> 9 s(spei_12m).3 1.885168524e-1
#> 10 s(spei_12m).4 3.700521594e-1
#> 11 s(spei_12m).5 -1.339453641e-1
#> 12 s(spei_12m).6 4.554122512e-1
#> 13 s(spei_12m).7 -2.666845532e-1
#> 14 s(spei_12m).8 -1.017885822e+0
#> 15 s(spei_12m).9 3.668769268e-1
#> 16 s(gini_index).1 2.826479644e-1
#> 17 s(gini_index).2 4.120744404e-1
#> 18 s(gini_index).3 -2.019740777e-1
#> 19 s(gini_index).4 -1.770208269e-1
#> 20 s(gini_index).5 -1.981862247e-1
#> 21 s(gini_index).6 1.259152928e-1
#> 22 s(gini_index).7 -1.474396308e-1
#> 23 s(gini_index).8 -2.174645204e+0
#> 24 s(gini_index).9 4.426544696e-1
#> 25 s(gdp_per_capita).1 -2.053619376e+0
#> 26 s(gdp_per_capita).2 7.315256829e+0
#> 27 s(gdp_per_capita).3 -1.925762054e+0
#> 28 s(gdp_per_capita).4 4.795155103e+0
#> 29 s(gdp_per_capita).5 1.248153827e-1
#> 30 s(gdp_per_capita).6 -4.240558276e+0
#> 31 s(gdp_per_capita).7 -2.818157389e+0
#> 32 s(gdp_per_capita).8 -2.420388937e+0
#> 33 s(gdp_per_capita).9 -6.635749189e-1
#> 34 s(year).1 1.114142976e-1
#> 35 s(year).2 6.971093786e-1
#> 36 s(year).3 1.672375367e-1
#> 37 s(year).4 -3.487828787e-1
#> 38 s(year).5 -1.410763730e-1
#> 39 s(year).6 -9.605317159e-2
#> 40 s(year).7 -8.220028457e-2
#> 41 s(year).8 8.479166437e-1
#> 42 s(year).9 2.310593244e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 4.416008270e-24 0.4360888285 0.01511824469 0.2789251867
#> 2 observed 4.416008270e-24 0.1648447847 0.01316367878 0.2695935208
#> 3 estimate 4.416008270e-24 0.3105041066 0.01025400490 0.03886406860
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(51.382)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.651746893 0.003846583 -689.3772 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 6.696953 7.859763 161.3680 < 2.22e-16 ***
#> s(gini_index) 6.841539 7.947518 479.4436 < 2.22e-16 ***
#> s(gdp_per_capita) 7.634824 8.517122 124.1043 < 2.22e-16 ***
#> s(year) 8.514893 8.923327 188.3863 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0442 Deviance explained = 6.52%
#> -REML = -38009 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.416876512e-2 weak cohen1988
#> 2 SE 2.817249716e-3 <NA> <NA>
#> 3 Lower CI 3.864705714e-2 weak cohen1988
#> 4 Upper CI 4.969047310e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.068820926e+1
#> 2 logLik 3.808981478e+4
#> 3 AIC -7.610997660e+4
#> 4 BIC -7.583719155e+4
#> 5 deviance 1.823469728e+4
#> 6 df.residual 1.860231179e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 4.416876512e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.728128067e-2
#> 2 mean((Intercept)) -2.651746893e+0
#> 3 mean(s(spei_12m)) 6.611272216e-2
#> 4 mean(s(gini_index)) 6.932181917e-2
#> 5 mean(s(gdp_per_capita)) -7.188967017e-2
#> 6 mean(s(year)) 7.782618535e-2
#> 7 s(spei_12m).1 2.060368968e-2
#> 8 s(spei_12m).2 1.017599845e-1
#> 9 s(spei_12m).3 3.684981846e-2
#> 10 s(spei_12m).4 4.728982184e-2
#> 11 s(spei_12m).5 3.109644600e-2
#> 12 s(spei_12m).6 7.093981679e-2
#> 13 s(spei_12m).7 -2.918434312e-3
#> 14 s(spei_12m).8 2.639258682e-1
#> 15 s(spei_12m).9 2.546748828e-2
#> 16 s(gini_index).1 8.444321389e-2
#> 17 s(gini_index).2 -6.780643536e-2
#> 18 s(gini_index).3 3.988797866e-2
#> 19 s(gini_index).4 -1.720389427e-2
#> 20 s(gini_index).5 -1.172141409e-2
#> 21 s(gini_index).6 2.102838010e-2
#> 22 s(gini_index).7 -5.969355598e-3
#> 23 s(gini_index).8 3.221583336e-1
#> 24 s(gini_index).9 2.590795655e-1
#> 25 s(gdp_per_capita).1 1.751977335e-1
#> 26 s(gdp_per_capita).2 1.305133374e+0
#> 27 s(gdp_per_capita).3 -4.578829314e-1
#> 28 s(gdp_per_capita).4 -6.671013914e-1
#> 29 s(gdp_per_capita).5 1.905222109e-1
#> 30 s(gdp_per_capita).6 -4.587545383e-1
#> 31 s(gdp_per_capita).7 -3.802488465e-1
#> 32 s(gdp_per_capita).8 -1.951691219e-1
#> 33 s(gdp_per_capita).9 -1.587035204e-1
#> 34 s(year).1 -1.514676533e-1
#> 35 s(year).2 2.514417196e-1
#> 36 s(year).3 1.636085973e-1
#> 37 s(year).4 -4.717353758e-2
#> 38 s(year).5 8.053616250e-3
#> 39 s(year).6 9.384634440e-2
#> 40 s(year).7 -7.532136823e-2
#> 41 s(year).8 2.453975950e-1
#> 42 s(year).9 2.120503548e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 2.637050883e-21 0.8426469523 0.03550855298 0.5330944727
#> 2 observed 2.637050883e-21 0.6040950096 0.02956931348 0.4452222253
#> 3 estimate 2.637050883e-21 0.6978053901 0.02633734989 0.05260443087
#> # ℹ 1 more variable: `s(year)` <dbl>
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(64.399)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + s(gini_index) + s(gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.696651837 0.009599427 -280.918 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.004137 1.008195 0.05373 0.82621612
#> s(gini_index) 4.219623 5.267194 42.31875 < 2.22e-16 ***
#> s(gdp_per_capita) 2.258568 2.771123 17.48275 0.00058502 ***
#> s(year) 3.615511 4.481865 31.76082 0.0000065322 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0373 Deviance explained = 4.7%
#> -REML = -5452.9 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.729930867e-2 weak cohen1988
#> 2 SE 7.048750374e-3 <NA> <NA>
#> 3 Lower CI 2.348401180e-2 weak cohen1988
#> 4 Upper CI 5.111460554e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.209783779e+1
#> 2 logLik 5.482303656e+3
#> 3 AIC -1.093355056e+4
#> 4 BIC -1.084287832e+4
#> 5 deviance 2.480839104e+3
#> 6 df.residual 2.525902162e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 3.729930867e-2
#> 9 npar 3.7 e+1
#>
#> # A tibble: 42 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -9.366030700e-2
#> 2 mean((Intercept)) -2.696651837e+0
#> 3 mean(s(spei_12m)) 3.114213471e-4
#> 4 mean(s(gini_index)) -4.721254303e-2
#> 5 mean(s(gdp_per_capita)) -3.748773334e-2
#> 6 mean(s(year)) -1.031091875e-3
#> 7 s(spei_12m).1 1.603446727e-6
#> 8 s(spei_12m).2 2.945206642e-5
#> 9 s(spei_12m).3 -4.258552834e-6
#> 10 s(spei_12m).4 -2.108326387e-5
#> 11 s(spei_12m).5 -3.006398452e-6
#> 12 s(spei_12m).6 1.982741659e-5
#> 13 s(spei_12m).7 4.552717443e-6
#> 14 s(spei_12m).8 1.263965302e-4
#> 15 s(spei_12m).9 2.649308162e-3
#> 16 s(gini_index).1 -6.881606560e-2
#> 17 s(gini_index).2 -9.891381261e-2
#> 18 s(gini_index).3 6.414335204e-3
#> 19 s(gini_index).4 -1.838687282e-2
#> 20 s(gini_index).5 8.285615140e-3
#> 21 s(gini_index).6 -2.243903256e-2
#> 22 s(gini_index).7 2.143593933e-3
#> 23 s(gini_index).8 -1.081026546e-1
#> 24 s(gini_index).9 -1.250979934e-1
#> 25 s(gdp_per_capita).1 9.879072190e-3
#> 26 s(gdp_per_capita).2 -2.591351541e-2
#> 27 s(gdp_per_capita).3 -2.671643883e-2
#> 28 s(gdp_per_capita).4 -4.624284419e-2
#> 29 s(gdp_per_capita).5 2.377537177e-2
#> 30 s(gdp_per_capita).6 4.219574863e-2
#> 31 s(gdp_per_capita).7 -4.041394305e-2
#> 32 s(gdp_per_capita).8 -2.347643931e-1
#> 33 s(gdp_per_capita).9 -3.918865803e-2
#> 34 s(year).1 7.611043022e-2
#> 35 s(year).2 -1.330910550e-2
#> 36 s(year).3 6.535445877e-3
#> 37 s(year).4 -2.240308328e-2
#> 38 s(year).5 -1.487999615e-2
#> 39 s(year).6 -1.032341486e-2
#> 40 s(year).7 -4.492602871e-3
#> 41 s(year).8 7.559972575e-2
#> 42 s(year).9 -1.021172261e-1
#>
#> # A tibble: 3 × 6
#> names para `s(spei_12m)` `s(gini_index)` `s(gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 worst 3.858430707e-25 0.5727624185 0.04204433397 0.4205494060
#> 2 observed 3.858430707e-25 0.5498755857 0.01266713794 0.1523034877
#> 3 estimate 3.858430707e-25 0.4276408768 0.01993345190 0.04098973891
#> # ℹ 1 more variable: `s(year)` <dbl>
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_mpepr_gam_2_by_misfs,
type = 2,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_2_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By s(spei_12m)
+ te(gini_index, gdp_per_capita)
+ year
(Unordered year
)
In this model, the year
variable is treated as a unordered categorical variable.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(mbepr_gam_3_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(20.768)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.23298563 0.03756706 -86.05905 < 2.22e-16 ***
#> year2009 0.30857421 0.04867295 6.33975 0.000000000230143 ***
#> year2011 0.29875880 0.04611862 6.47805 0.000000000092915 ***
#> year2012 0.29360245 0.04860732 6.04029 0.000000001538346 ***
#> year2013 0.43346187 0.04713174 9.19681 < 2.22e-16 ***
#> year2014 0.59671139 0.04808051 12.41067 < 2.22e-16 ***
#> year2015 0.52057111 0.05246582 9.92210 < 2.22e-16 ***
#> year2016 0.65402002 0.05289714 12.36400 < 2.22e-16 ***
#> year2017 0.51828339 0.05159178 10.04585 < 2.22e-16 ***
#> year2018 0.54472383 0.04867521 11.19099 < 2.22e-16 ***
#> year2019 0.59986065 0.05461938 10.98256 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 2.180163 2.811902 10.65033 0.010606 *
#> te(gini_index,gdp_per_capita) 15.214784 17.061690 715.08585 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0216 Deviance explained = 11.5%
#> -REML = -13717 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.161223834e-2 weak cohen1988
#> 2 SE 3.226925333e-3 <NA> <NA>
#> 3 Lower CI 1.528758091e-2 very weak (negligible) cohen1988
#> 4 Upper CI 2.793689578e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.839494693e+1
#> 2 logLik 1.377852396e+4
#> 3 AIC -2.749330074e+4
#> 4 BIC -2.727363913e+4
#> 5 deviance 7.432364137e+3
#> 6 df.residual 7.242605053e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared 2.161223834e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.289992222e-1
#> 2 mean((Intercept)) -3.232985626e+0
#> 3 year2009 3.085742055e-1
#> 4 year2011 2.987587976e-1
#> 5 year2012 2.936024493e-1
#> 6 year2013 4.334618656e-1
#> 7 year2014 5.967113941e-1
#> 8 year2015 5.205711055e-1
#> 9 year2016 6.540200177e-1
#> 10 year2017 5.182833917e-1
#> 11 year2018 5.447238270e-1
#> 12 year2019 5.998606538e-1
#> 13 mean(s(spei_12m)) -2.016154349e-3
#> 14 mean(te(gini_index,gdp_per_capita)) -2.997251030e-1
#> 15 s(spei_12m).1 -2.178341836e-2
#> 16 s(spei_12m).2 -8.195725078e-3
#> 17 s(spei_12m).3 -3.286372738e-3
#> 18 s(spei_12m).4 -5.901580994e-4
#> 19 s(spei_12m).5 7.330446184e-4
#> 20 s(spei_12m).6 -3.700543432e-4
#> 21 s(spei_12m).7 4.768776783e-4
#> 22 s(spei_12m).8 -8.255590377e-3
#> 23 s(spei_12m).9 2.312600756e-2
#> 24 te(gini_index,gdp_per_capita).1 -7.795052746e-1
#> 25 te(gini_index,gdp_per_capita).2 -7.932672096e-1
#> 26 te(gini_index,gdp_per_capita).3 -7.587539514e-1
#> 27 te(gini_index,gdp_per_capita).4 -1.502772633e+0
#> 28 te(gini_index,gdp_per_capita).5 2.667280121e-2
#> 29 te(gini_index,gdp_per_capita).6 2.733278277e-1
#> 30 te(gini_index,gdp_per_capita).7 -5.209039948e-1
#> 31 te(gini_index,gdp_per_capita).8 3.939809631e-1
#> 32 te(gini_index,gdp_per_capita).9 -1.870418978e+0
#> 33 te(gini_index,gdp_per_capita).10 3.096843911e-1
#> 34 te(gini_index,gdp_per_capita).11 1.984118079e-1
#> 35 te(gini_index,gdp_per_capita).12 -1.016724690e-1
#> 36 te(gini_index,gdp_per_capita).13 1.926253195e-1
#> 37 te(gini_index,gdp_per_capita).14 -2.027085910e+0
#> 38 te(gini_index,gdp_per_capita).15 5.655569768e-1
#> 39 te(gini_index,gdp_per_capita).16 4.696572474e-1
#> 40 te(gini_index,gdp_per_capita).17 -6.867545317e-2
#> 41 te(gini_index,gdp_per_capita).18 3.314525056e-1
#> 42 te(gini_index,gdp_per_capita).19 -2.226209784e+0
#> 43 te(gini_index,gdp_per_capita).20 1.293901350e+0
#> 44 te(gini_index,gdp_per_capita).21 1.080069668e+0
#> 45 te(gini_index,gdp_per_capita).22 8.908346670e-1
#> 46 te(gini_index,gdp_per_capita).23 8.156460438e-1
#> 47 te(gini_index,gdp_per_capita).24 -3.385958383e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9420895447 0.5836182392 0.3501207456
#> 2 observed 0.9420895447 0.5578745296 0.05464660180
#> 3 estimate 0.9420895447 0.4793905047 0.01046755054
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.446)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.39815230 0.01911937 -177.73348 < 2.22e-16 ***
#> year2009 0.22739102 0.02514366 9.04367 < 2.22e-16 ***
#> year2011 0.27305721 0.02474664 11.03411 < 2.22e-16 ***
#> year2012 0.19932994 0.02676493 7.44743 0.000000000000095176 ***
#> year2013 0.41410899 0.02586480 16.01052 < 2.22e-16 ***
#> year2014 0.38615506 0.02703733 14.28229 < 2.22e-16 ***
#> year2015 0.37087621 0.02597773 14.27670 < 2.22e-16 ***
#> year2016 0.41707153 0.02650261 15.73700 < 2.22e-16 ***
#> year2017 0.37855626 0.02683989 14.10424 < 2.22e-16 ***
#> year2018 0.32137718 0.02695880 11.92105 < 2.22e-16 ***
#> year2019 0.26049893 0.02793545 9.32503 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.544149 8.494998 81.46421 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.250114 19.305117 2269.29789 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0216 Deviance explained = 9.54%
#> -REML = -63791 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.679426317e+1
#> 2 logLik 6.388920899e+4
#> 3 AIC -1.276988177e+5
#> 4 BIC -1.273694081e+5
#> 5 deviance 3.045683309e+4
#> 6 df.residual 2.900820574e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -2.157398657e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.588826921e-2
#> 2 mean((Intercept)) -3.398152299e+0
#> 3 year2009 2.273910229e-1
#> 4 year2011 2.730572054e-1
#> 5 year2012 1.993299403e-1
#> 6 year2013 4.141089877e-1
#> 7 year2014 3.861550560e-1
#> 8 year2015 3.708762140e-1
#> 9 year2016 4.170715259e-1
#> 10 year2017 3.785562559e-1
#> 11 year2018 3.213771824e-1
#> 12 year2019 2.604989311e-1
#> 13 mean(s(spei_12m)) 3.177973298e-2
#> 14 mean(te(gini_index,gdp_per_capita)) -7.147381105e-2
#> 15 s(spei_12m).1 1.414419830e-1
#> 16 s(spei_12m).2 4.983657501e-2
#> 17 s(spei_12m).3 -1.000067657e-2
#> 18 s(spei_12m).4 2.886979127e-2
#> 19 s(spei_12m).5 -5.796387621e-2
#> 20 s(spei_12m).6 9.581636604e-2
#> 21 s(spei_12m).7 -5.731463229e-2
#> 22 s(spei_12m).8 -7.255839536e-2
#> 23 s(spei_12m).9 1.678904620e-1
#> 24 te(gini_index,gdp_per_capita).1 -1.119698183e+0
#> 25 te(gini_index,gdp_per_capita).2 -1.429534583e+0
#> 26 te(gini_index,gdp_per_capita).3 -1.477217965e+0
#> 27 te(gini_index,gdp_per_capita).4 7.597639909e+0
#> 28 te(gini_index,gdp_per_capita).5 2.091013498e-1
#> 29 te(gini_index,gdp_per_capita).6 1.930054492e-1
#> 30 te(gini_index,gdp_per_capita).7 -4.098893822e-1
#> 31 te(gini_index,gdp_per_capita).8 2.474898097e-1
#> 32 te(gini_index,gdp_per_capita).9 2.698633202e+0
#> 33 te(gini_index,gdp_per_capita).10 5.884835433e-1
#> 34 te(gini_index,gdp_per_capita).11 2.365696765e-1
#> 35 te(gini_index,gdp_per_capita).12 -6.255963264e-2
#> 36 te(gini_index,gdp_per_capita).13 1.790936008e-1
#> 37 te(gini_index,gdp_per_capita).14 1.002323927e+0
#> 38 te(gini_index,gdp_per_capita).15 6.552461715e-1
#> 39 te(gini_index,gdp_per_capita).16 5.486526326e-1
#> 40 te(gini_index,gdp_per_capita).17 -2.473203466e-1
#> 41 te(gini_index,gdp_per_capita).18 7.048645160e-1
#> 42 te(gini_index,gdp_per_capita).19 -6.473846294e-1
#> 43 te(gini_index,gdp_per_capita).20 9.211046114e-1
#> 44 te(gini_index,gdp_per_capita).21 -3.881025403e-1
#> 45 te(gini_index,gdp_per_capita).22 -1.175299397e+0
#> 46 te(gini_index,gdp_per_capita).23 -1.210277199e+0
#> 47 te(gini_index,gdp_per_capita).24 -9.330296007e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9275958816 0.4992052948 2.793717330e-1
#> 2 observed 0.9275958816 0.3008987825 6.330303072e-2
#> 3 estimate 0.9275958816 0.3728479981 3.827404525e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(42.126)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.620766968 0.020476782 -127.98725 < 2.22e-16 ***
#> year2009 0.058218265 0.019910319 2.92402 0.0034554 **
#> year2011 0.038676379 0.022443692 1.72326 0.0848410 .
#> year2012 -0.083675116 0.030752475 -2.72092 0.0065100 **
#> year2013 0.002978312 0.023432023 0.12710 0.8988578
#> year2014 0.034189294 0.022643802 1.50987 0.1310755
#> year2015 -0.074015507 0.031962288 -2.31571 0.0205739 *
#> year2016 0.007198837 0.034989284 0.20574 0.8369909
#> year2017 0.002247012 0.029728428 0.07558 0.9397496
#> year2018 -0.027084949 0.030651037 -0.88366 0.3768824
#> year2019 0.004140489 0.029769408 0.13909 0.8893827
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.717382 8.59962 32.9246 0.000069845 ***
#> te(gini_index,gdp_per_capita) 16.001065 17.37288 1083.9345 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0684 Deviance explained = 7.72%
#> -REML = -36306 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 6.841481644e-2 weak cohen1988
#> 2 SE 3.417308229e-3 <NA> <NA>
#> 3 Lower CI 6.171701538e-2 weak cohen1988
#> 4 Upper CI 7.511261749e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.471844696e+1
#> 2 logLik 3.639786101e+4
#> 3 AIC -7.271977703e+4
#> 4 BIC -7.242235022e+4
#> 5 deviance 1.813998341e+4
#> 6 df.residual 1.859828155e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 6.841481644e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 7.341697776e-2
#> 2 mean((Intercept)) -2.620766968e+0
#> 3 year2009 5.821826482e-2
#> 4 year2011 3.867637915e-2
#> 5 year2012 -8.367511554e-2
#> 6 year2013 2.978312096e-3
#> 7 year2014 3.418929394e-2
#> 8 year2015 -7.401550733e-2
#> 9 year2016 7.198836531e-3
#> 10 year2017 2.247011635e-3
#> 11 year2018 -2.708494893e-2
#> 12 year2019 4.140489198e-3
#> 13 mean(s(spei_12m)) -9.236287904e-3
#> 14 mean(te(gini_index,gdp_per_capita)) 2.488069819e-1
#> 15 s(spei_12m).1 -4.613486732e-2
#> 16 s(spei_12m).2 -2.568979579e-2
#> 17 s(spei_12m).3 2.783719058e-2
#> 18 s(spei_12m).4 -8.535310676e-2
#> 19 s(spei_12m).5 4.753607602e-2
#> 20 s(spei_12m).6 -6.322519744e-2
#> 21 s(spei_12m).7 9.152273212e-2
#> 22 s(spei_12m).8 -1.873058954e-1
#> 23 s(spei_12m).9 1.576862729e-1
#> 24 te(gini_index,gdp_per_capita).1 -7.813995718e-1
#> 25 te(gini_index,gdp_per_capita).2 -7.569836534e-1
#> 26 te(gini_index,gdp_per_capita).3 -6.940614281e-1
#> 27 te(gini_index,gdp_per_capita).4 -7.089830406e+0
#> 28 te(gini_index,gdp_per_capita).5 1.283558724e-1
#> 29 te(gini_index,gdp_per_capita).6 1.077560846e-1
#> 30 te(gini_index,gdp_per_capita).7 -3.063741771e-1
#> 31 te(gini_index,gdp_per_capita).8 2.150074993e-1
#> 32 te(gini_index,gdp_per_capita).9 -1.386925154e+0
#> 33 te(gini_index,gdp_per_capita).10 3.438434786e-1
#> 34 te(gini_index,gdp_per_capita).11 8.137262586e-2
#> 35 te(gini_index,gdp_per_capita).12 -3.889470758e-2
#> 36 te(gini_index,gdp_per_capita).13 -1.302864867e-2
#> 37 te(gini_index,gdp_per_capita).14 2.801625533e-1
#> 38 te(gini_index,gdp_per_capita).15 7.450813057e-1
#> 39 te(gini_index,gdp_per_capita).16 4.156350439e-1
#> 40 te(gini_index,gdp_per_capita).17 -4.115556263e-1
#> 41 te(gini_index,gdp_per_capita).18 5.201646160e-1
#> 42 te(gini_index,gdp_per_capita).19 2.008179825e+0
#> 43 te(gini_index,gdp_per_capita).20 5.280315458e-1
#> 44 te(gini_index,gdp_per_capita).21 1.886566377e-1
#> 45 te(gini_index,gdp_per_capita).22 8.057516073e-2
#> 46 te(gini_index,gdp_per_capita).23 7.554931055e-2
#> 47 te(gini_index,gdp_per_capita).24 1.173204938e+1
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9613644170 0.8446129978 5.458642390e-1
#> 2 observed 0.9613644170 0.2866361195 1.253845810e-1
#> 3 estimate 0.9613644170 0.7107244449 5.201532273e-3
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(37.864)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.268682114 0.040889938 -55.48265 < 2.22e-16 ***
#> year2009 0.047345573 0.047524977 0.99623 0.3191408
#> year2011 -0.005831165 0.050681181 -0.11506 0.9084009
#> year2012 -0.182957757 0.054786015 -3.33950 0.0008393 ***
#> year2013 0.027363913 0.053526948 0.51122 0.6091988
#> year2014 0.075493640 0.054150664 1.39414 0.1632752
#> year2015 -0.078631740 0.068362733 -1.15021 0.2500559
#> year2016 -0.025645711 0.059225682 -0.43302 0.6650026
#> year2017 -0.018970228 0.059479389 -0.31894 0.7497736
#> year2018 -0.043299827 0.057217108 -0.75676 0.4491915
#> year2019 -0.014019059 0.057290398 -0.24470 0.8066874
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 2.889359 3.68932 5.60371 0.27368
#> te(gini_index,gdp_per_capita) 11.349574 13.45282 174.36664 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0989 Deviance explained = 12.1%
#> -REML = -4359.5 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0.09890811359 weak cohen1988
#> 2 SE 0.01074374012 <NA> <NA>
#> 3 Lower CI 0.07785076991 weak cohen1988
#> 4 Upper CI 0.1199654573 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.523893311e+1
#> 2 logLik 4.409426275e+3
#> 3 AIC -8.760568268e+3
#> 4 BIC -8.590403466e+3
#> 5 deviance 2.444972252e+3
#> 6 df.residual 2.512761067e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 9.890811359e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -7.592613248e-2
#> 2 mean((Intercept)) -2.268682114e+0
#> 3 year2009 4.734557350e-2
#> 4 year2011 -5.831164999e-3
#> 5 year2012 -1.829577572e-1
#> 6 year2013 2.736391258e-2
#> 7 year2014 7.549363953e-2
#> 8 year2015 -7.863174013e-2
#> 9 year2016 -2.564571120e-2
#> 10 year2017 -1.897022808e-2
#> 11 year2018 -4.329982719e-2
#> 12 year2019 -1.401905860e-2
#> 13 mean(s(spei_12m)) 6.540169102e-3
#> 14 mean(te(gini_index,gdp_per_capita)) -3.799070311e-2
#> 15 s(spei_12m).1 -4.008651089e-2
#> 16 s(spei_12m).2 4.079581844e-2
#> 17 s(spei_12m).3 -3.119093474e-3
#> 18 s(spei_12m).4 -1.254935350e-2
#> 19 s(spei_12m).5 -5.362924734e-3
#> 20 s(spei_12m).6 1.559926540e-2
#> 21 s(spei_12m).7 2.704535051e-3
#> 22 s(spei_12m).8 9.883023392e-2
#> 23 s(spei_12m).9 -3.795044830e-2
#> 24 te(gini_index,gdp_per_capita).1 5.519785492e-2
#> 25 te(gini_index,gdp_per_capita).2 -7.264806716e-2
#> 26 te(gini_index,gdp_per_capita).3 -1.352418407e-1
#> 27 te(gini_index,gdp_per_capita).4 -2.055574387e+0
#> 28 te(gini_index,gdp_per_capita).5 4.875974026e-1
#> 29 te(gini_index,gdp_per_capita).6 -1.587450968e-1
#> 30 te(gini_index,gdp_per_capita).7 1.296215092e-1
#> 31 te(gini_index,gdp_per_capita).8 -4.128260909e-1
#> 32 te(gini_index,gdp_per_capita).9 -9.377897912e-1
#> 33 te(gini_index,gdp_per_capita).10 4.764039750e-1
#> 34 te(gini_index,gdp_per_capita).11 2.109089096e-2
#> 35 te(gini_index,gdp_per_capita).12 5.150093123e-2
#> 36 te(gini_index,gdp_per_capita).13 -1.872209458e-1
#> 37 te(gini_index,gdp_per_capita).14 -6.183323791e-1
#> 38 te(gini_index,gdp_per_capita).15 4.394543335e-1
#> 39 te(gini_index,gdp_per_capita).16 -5.029370748e-2
#> 40 te(gini_index,gdp_per_capita).17 1.270925793e-1
#> 41 te(gini_index,gdp_per_capita).18 -3.755606471e-1
#> 42 te(gini_index,gdp_per_capita).19 -2.330163689e-1
#> 43 te(gini_index,gdp_per_capita).20 2.585909656e-1
#> 44 te(gini_index,gdp_per_capita).21 3.130989722e-1
#> 45 te(gini_index,gdp_per_capita).22 2.737408539e-1
#> 46 te(gini_index,gdp_per_capita).23 6.763256467e-2
#> 47 te(gini_index,gdp_per_capita).24 1.624449615e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9464494757 0.6150541202 4.570217924e-1
#> 2 observed 0.9464494757 0.2304707413 3.277731155e-1
#> 3 estimate 0.9464494757 0.4655127094 9.695469040e-3
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_gam_3_by_misfs,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_3_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(beipr_gam_3_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(29.936)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.99878598 0.03261588 -91.94252 < 2.22e-16 ***
#> year2009 0.07081325 0.04421256 1.60165 0.10923203
#> year2011 0.13677162 0.03945138 3.46684 0.00052661 ***
#> year2012 0.15511255 0.04247901 3.65151 0.00026070 ***
#> year2013 0.26970425 0.04060933 6.64143 0.000000000031064 ***
#> year2014 0.41027628 0.04231045 9.69681 < 2.22e-16 ***
#> year2015 0.48791945 0.04610164 10.58356 < 2.22e-16 ***
#> year2016 0.44953306 0.04613775 9.74328 < 2.22e-16 ***
#> year2017 0.46841422 0.04464446 10.49210 < 2.22e-16 ***
#> year2018 0.49898124 0.04156296 12.00543 < 2.22e-16 ***
#> year2019 0.54047605 0.04762814 11.34783 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.141069 5.234906 24.74406 0.00018972 ***
#> te(gini_index,gdp_per_capita) 18.295511 19.713229 1101.49830 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.112 Deviance explained = 16%
#> -REML = -13609 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.115294580e-1 weak cohen1988
#> 2 SE 6.656805371e-3 <NA> <NA>
#> 3 Lower CI 9.848235918e-2 weak cohen1988
#> 4 Upper CI 1.245765567e-1 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.343658047e+1
#> 2 logLik 1.369171308e+4
#> 3 AIC -2.731027342e+4
#> 4 BIC -2.705820190e+4
#> 5 deviance 7.382702348e+3
#> 6 df.residual 7.237563420e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared 1.115294580e-1
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.283507270e-1
#> 2 mean((Intercept)) -2.998785985e+0
#> 3 year2009 7.081324919e-2
#> 4 year2011 1.367716203e-1
#> 5 year2012 1.551125543e-1
#> 6 year2013 2.697042483e-1
#> 7 year2014 4.102762779e-1
#> 8 year2015 4.879194535e-1
#> 9 year2016 4.495330638e-1
#> 10 year2017 4.684142227e-1
#> 11 year2018 4.989812392e-1
#> 12 year2019 5.404760498e-1
#> 13 mean(s(spei_12m)) -9.625153504e-3
#> 14 mean(te(gini_index,gdp_per_capita)) -2.520842334e-1
#> 15 s(spei_12m).1 -9.635650001e-2
#> 16 s(spei_12m).2 -8.006567200e-2
#> 17 s(spei_12m).3 2.276201699e-3
#> 18 s(spei_12m).4 -2.233211896e-2
#> 19 s(spei_12m).5 -1.791541793e-2
#> 20 s(spei_12m).6 2.604322717e-2
#> 21 s(spei_12m).7 -1.286176649e-2
#> 22 s(spei_12m).8 1.803594563e-1
#> 23 s(spei_12m).9 -6.577379134e-2
#> 24 te(gini_index,gdp_per_capita).1 -9.735629435e-1
#> 25 te(gini_index,gdp_per_capita).2 -6.422293103e-1
#> 26 te(gini_index,gdp_per_capita).3 -4.647335464e-1
#> 27 te(gini_index,gdp_per_capita).4 1.316316608e+0
#> 28 te(gini_index,gdp_per_capita).5 3.506072661e-1
#> 29 te(gini_index,gdp_per_capita).6 8.705321292e-2
#> 30 te(gini_index,gdp_per_capita).7 -4.759918274e-1
#> 31 te(gini_index,gdp_per_capita).8 2.841693395e-1
#> 32 te(gini_index,gdp_per_capita).9 -6.816867580e-1
#> 33 te(gini_index,gdp_per_capita).10 5.687276783e-1
#> 34 te(gini_index,gdp_per_capita).11 1.408928335e-1
#> 35 te(gini_index,gdp_per_capita).12 -9.040005533e-2
#> 36 te(gini_index,gdp_per_capita).13 1.444079150e-1
#> 37 te(gini_index,gdp_per_capita).14 -1.441666103e+0
#> 38 te(gini_index,gdp_per_capita).15 7.032678760e-1
#> 39 te(gini_index,gdp_per_capita).16 4.229160834e-1
#> 40 te(gini_index,gdp_per_capita).17 -1.045149770e-2
#> 41 te(gini_index,gdp_per_capita).18 2.794978765e-1
#> 42 te(gini_index,gdp_per_capita).19 -2.224607890e+0
#> 43 te(gini_index,gdp_per_capita).20 7.387072543e-1
#> 44 te(gini_index,gdp_per_capita).21 1.123575597e+0
#> 45 te(gini_index,gdp_per_capita).22 3.705866655e-1
#> 46 te(gini_index,gdp_per_capita).23 4.785325026e-1
#> 47 te(gini_index,gdp_per_capita).24 -6.053950378e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9420895447 0.5836182392 0.3501207456
#> 2 observed 0.9420895447 0.5115158900 0.05841210345
#> 3 estimate 0.9420895447 0.4793905047 0.01046755054
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(26.729)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.09758344 0.01635898 -189.35070 < 2.22e-16 ***
#> year2009 0.14724818 0.02140509 6.87912 0.00000000000602239 ***
#> year2011 0.15368581 0.02124160 7.23513 0.00000000000046507 ***
#> year2012 0.08356946 0.02304343 3.62661 0.00028717 ***
#> year2013 0.25192005 0.02214861 11.37408 < 2.22e-16 ***
#> year2014 0.24869881 0.02318614 10.72619 < 2.22e-16 ***
#> year2015 0.32492541 0.02206083 14.72861 < 2.22e-16 ***
#> year2016 0.29693782 0.02269660 13.08292 < 2.22e-16 ***
#> year2017 0.32556156 0.02281932 14.26693 < 2.22e-16 ***
#> year2018 0.31283156 0.02288037 13.67249 < 2.22e-16 ***
#> year2019 0.28252383 0.02369961 11.92103 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.901213 8.698504 60.63316 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 17.850119 18.963616 2713.35083 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.048 Deviance explained = 11.2%
#> -REML = -57784 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.675133179e+1
#> 2 logLik 5.788346961e+4
#> 3 AIC -1.156876150e+5
#> 4 BIC -1.153593474e+5
#> 5 deviance 3.026805245e+4
#> 6 df.residual 2.900824867e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -4.800591416e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -8.554078786e-2
#> 2 mean((Intercept)) -3.097583437e+0
#> 3 year2009 1.472481847e-1
#> 4 year2011 1.536858069e-1
#> 5 year2012 8.356945881e-2
#> 6 year2013 2.519200497e-1
#> 7 year2014 2.486988140e-1
#> 8 year2015 3.249254061e-1
#> 9 year2016 2.969378204e-1
#> 10 year2017 3.255615550e-1
#> 11 year2018 3.128315572e-1
#> 12 year2019 2.825238325e-1
#> 13 mean(s(spei_12m)) -3.597975302e-4
#> 14 mean(te(gini_index,gdp_per_capita)) -1.287864807e-1
#> 15 s(spei_12m).1 2.021638934e-1
#> 16 s(spei_12m).2 -2.823769474e-1
#> 17 s(spei_12m).3 1.810484441e-1
#> 18 s(spei_12m).4 2.612947635e-1
#> 19 s(spei_12m).5 -6.860153445e-2
#> 20 s(spei_12m).6 2.009209323e-1
#> 21 s(spei_12m).7 -1.395550199e-1
#> 22 s(spei_12m).8 -6.710101164e-1
#> 23 s(spei_12m).9 3.128774072e-1
#> 24 te(gini_index,gdp_per_capita).1 -1.300480953e+0
#> 25 te(gini_index,gdp_per_capita).2 -1.403615873e+0
#> 26 te(gini_index,gdp_per_capita).3 -1.413501674e+0
#> 27 te(gini_index,gdp_per_capita).4 1.599849003e+1
#> 28 te(gini_index,gdp_per_capita).5 2.679432580e-1
#> 29 te(gini_index,gdp_per_capita).6 1.864322651e-1
#> 30 te(gini_index,gdp_per_capita).7 -3.995998658e-1
#> 31 te(gini_index,gdp_per_capita).8 2.345051111e-1
#> 32 te(gini_index,gdp_per_capita).9 5.433299705e+0
#> 33 te(gini_index,gdp_per_capita).10 4.662637856e-1
#> 34 te(gini_index,gdp_per_capita).11 2.150365022e-1
#> 35 te(gini_index,gdp_per_capita).12 -5.842308641e-2
#> 36 te(gini_index,gdp_per_capita).13 1.773377538e-1
#> 37 te(gini_index,gdp_per_capita).14 1.751293438e+0
#> 38 te(gini_index,gdp_per_capita).15 5.437910133e-1
#> 39 te(gini_index,gdp_per_capita).16 5.393299690e-1
#> 40 te(gini_index,gdp_per_capita).17 -2.173888487e-1
#> 41 te(gini_index,gdp_per_capita).18 6.910824492e-1
#> 42 te(gini_index,gdp_per_capita).19 -1.866339996e+0
#> 43 te(gini_index,gdp_per_capita).20 1.795199471e-1
#> 44 te(gini_index,gdp_per_capita).21 -4.537530539e-1
#> 45 te(gini_index,gdp_per_capita).22 -7.555563964e-1
#> 46 te(gini_index,gdp_per_capita).23 -5.792240575e-1
#> 47 te(gini_index,gdp_per_capita).24 -2.132731696e+1
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9275958816 0.4992052948 2.793717330e-1
#> 2 observed 0.9275958816 0.1083056916 5.241800592e-2
#> 3 estimate 0.9275958816 0.3728479981 3.827404525e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(81.808)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.53875962 0.01482117 -171.29275 < 2.22e-16 ***
#> year2009 0.03096156 0.01430873 2.16382 0.03047787 *
#> year2011 -0.02356886 0.01637470 -1.43935 0.15005250
#> year2012 -0.07698674 0.02219359 -3.46887 0.00052265 ***
#> year2013 0.02015739 0.01706305 1.18135 0.23746489
#> year2014 0.02300799 0.01655738 1.38959 0.16465306
#> year2015 0.02532993 0.02295406 1.10351 0.26980788
#> year2016 -0.01366767 0.02530460 -0.54013 0.58911037
#> year2017 0.06771156 0.02144729 3.15711 0.00159339 **
#> year2018 0.10345396 0.02199161 4.70425 0.000002548 ***
#> year2019 0.08563376 0.02147626 3.98737 0.000066810 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.994388 8.744933 53.07363 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 15.069627 16.636388 2140.57662 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.143 Deviance explained = 12.8%
#> -REML = -40389 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.432321617e-1 moderate cohen1988
#> 2 SE 4.547470866e-3 <NA> <NA>
#> 3 Lower CI 1.343192826e-1 moderate cohen1988
#> 4 Upper CI 1.521450408e-1 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.406401500e+1
#> 2 logLik 4.048503568e+4
#> 3 AIC -8.089544008e+4
#> 4 BIC -8.060315824e+4
#> 5 deviance 1.837760439e+4
#> 6 df.residual 1.859893598e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 1.432321617e-1
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 4.330707128e-2
#> 2 mean((Intercept)) -2.538759625e+0
#> 3 year2009 3.096156183e-2
#> 4 year2011 -2.356886354e-2
#> 5 year2012 -7.698673974e-2
#> 6 year2013 2.015738543e-2
#> 7 year2014 2.300799097e-2
#> 8 year2015 2.532992637e-2
#> 9 year2016 -1.366766665e-2
#> 10 year2017 6.771156410e-2
#> 11 year2018 1.034539591e-1
#> 12 year2019 8.563376216e-2
#> 13 mean(s(spei_12m)) -2.210519091e-2
#> 14 mean(te(gini_index,gdp_per_capita)) 1.833826916e-1
#> 15 s(spei_12m).1 -8.489617037e-2
#> 16 s(spei_12m).2 -7.388802165e-2
#> 17 s(spei_12m).3 3.610451454e-2
#> 18 s(spei_12m).4 -7.931824913e-2
#> 19 s(spei_12m).5 4.635180161e-2
#> 20 s(spei_12m).6 -6.954696071e-2
#> 21 s(spei_12m).7 8.679941785e-2
#> 22 s(spei_12m).8 -2.559302061e-1
#> 23 s(spei_12m).9 1.953771557e-1
#> 24 te(gini_index,gdp_per_capita).1 -5.254341623e-1
#> 25 te(gini_index,gdp_per_capita).2 -4.800486715e-1
#> 26 te(gini_index,gdp_per_capita).3 -4.109513460e-1
#> 27 te(gini_index,gdp_per_capita).4 -3.583947740e+0
#> 28 te(gini_index,gdp_per_capita).5 3.330085685e-1
#> 29 te(gini_index,gdp_per_capita).6 -1.551848345e-2
#> 30 te(gini_index,gdp_per_capita).7 -1.891532199e-1
#> 31 te(gini_index,gdp_per_capita).8 -3.684561886e-2
#> 32 te(gini_index,gdp_per_capita).9 -8.634146385e-1
#> 33 te(gini_index,gdp_per_capita).10 4.972739945e-1
#> 34 te(gini_index,gdp_per_capita).11 6.218926914e-2
#> 35 te(gini_index,gdp_per_capita).12 -5.211366224e-2
#> 36 te(gini_index,gdp_per_capita).13 -6.350505861e-2
#> 37 te(gini_index,gdp_per_capita).14 -6.054313867e-2
#> 38 te(gini_index,gdp_per_capita).15 6.679448815e-1
#> 39 te(gini_index,gdp_per_capita).16 2.471151161e-1
#> 40 te(gini_index,gdp_per_capita).17 -1.166431762e-1
#> 41 te(gini_index,gdp_per_capita).18 1.335971202e-1
#> 42 te(gini_index,gdp_per_capita).19 7.889725360e-1
#> 43 te(gini_index,gdp_per_capita).20 1.424272475e+0
#> 44 te(gini_index,gdp_per_capita).21 3.969634709e-1
#> 45 te(gini_index,gdp_per_capita).22 3.048509850e-1
#> 46 te(gini_index,gdp_per_capita).23 2.647556846e-1
#> 47 te(gini_index,gdp_per_capita).24 5.678359414e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9613644170 0.8446129978 5.458642390e-1
#> 2 observed 0.9613644170 0.3864015807 2.094565480e-1
#> 3 estimate 0.9613644170 0.7107244449 5.201532273e-3
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(63.448)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.09494545 0.03006017 -69.69173 < 2.22e-16 ***
#> year2009 0.12205175 0.03440710 3.54728 0.00038923 ***
#> year2011 0.10476896 0.03663616 2.85971 0.00424023 **
#> year2012 0.10385703 0.03904733 2.65977 0.00781934 **
#> year2013 0.16644869 0.03855557 4.31711 0.00001580845 ***
#> year2014 0.18325322 0.03940017 4.65108 0.00000330206 ***
#> year2015 0.17205214 0.04820913 3.56887 0.00035852 ***
#> year2016 0.15921902 0.04282270 3.71810 0.00020073 ***
#> year2017 0.20706134 0.04261368 4.85903 0.00000117960 ***
#> year2018 0.20204117 0.04081477 4.95020 0.00000074138 ***
#> year2019 0.20191820 0.04093094 4.93314 0.00000080917 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 2.024018 2.598938 8.29005 0.031124 *
#> te(gini_index,gdp_per_capita) 13.263294 15.366068 516.04372 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.213 Deviance explained = 20.3%
#> -REML = -4525.3 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0.2129726201 moderate cohen1988
#> 2 SE 0.01376962725 <NA> <NA>
#> 3 Lower CI 0.1859846466 moderate cohen1988
#> 4 Upper CI 0.2399605936 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.628731266e+1
#> 2 logLik 4.584839832e+3
#> 3 AIC -9.109749651e+3
#> 4 BIC -8.934780035e+3
#> 5 deviance 2.479699760e+3
#> 6 df.residual 2.511712687e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 2.129726201e-1
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.391040551e-2
#> 2 mean((Intercept)) -2.094945446e+0
#> 3 year2009 1.220517501e-1
#> 4 year2011 1.047689573e-1
#> 5 year2012 1.038570276e-1
#> 6 year2013 1.664486903e-1
#> 7 year2014 1.832532249e-1
#> 8 year2015 1.720521379e-1
#> 9 year2016 1.592190196e-1
#> 10 year2017 2.070613374e-1
#> 11 year2018 2.020411740e-1
#> 12 year2019 2.019181953e-1
#> 13 mean(s(spei_12m)) -4.745622149e-3
#> 14 mean(te(gini_index,gdp_per_capita)) -4.044721336e-3
#> 15 s(spei_12m).1 -3.047227584e-4
#> 16 s(spei_12m).2 -1.147448985e-2
#> 17 s(spei_12m).3 3.719335499e-4
#> 18 s(spei_12m).4 8.709914490e-3
#> 19 s(spei_12m).5 7.306053092e-4
#> 20 s(spei_12m).6 -8.731379643e-3
#> 21 s(spei_12m).7 -2.210018583e-3
#> 22 s(spei_12m).8 -5.565715943e-2
#> 23 s(spei_12m).9 2.585471758e-2
#> 24 te(gini_index,gdp_per_capita).1 -9.482904515e-2
#> 25 te(gini_index,gdp_per_capita).2 -3.058664409e-1
#> 26 te(gini_index,gdp_per_capita).3 -4.166153170e-1
#> 27 te(gini_index,gdp_per_capita).4 -6.568713411e-1
#> 28 te(gini_index,gdp_per_capita).5 5.335863338e-1
#> 29 te(gini_index,gdp_per_capita).6 -2.264846448e-1
#> 30 te(gini_index,gdp_per_capita).7 9.748295032e-2
#> 31 te(gini_index,gdp_per_capita).8 -5.090429813e-1
#> 32 te(gini_index,gdp_per_capita).9 -3.817064285e-1
#> 33 te(gini_index,gdp_per_capita).10 5.294958947e-1
#> 34 te(gini_index,gdp_per_capita).11 1.059180066e-2
#> 35 te(gini_index,gdp_per_capita).12 5.054846519e-2
#> 36 te(gini_index,gdp_per_capita).13 -2.025307535e-1
#> 37 te(gini_index,gdp_per_capita).14 -3.026506524e-1
#> 38 te(gini_index,gdp_per_capita).15 4.966251051e-1
#> 39 te(gini_index,gdp_per_capita).16 -5.129588333e-2
#> 40 te(gini_index,gdp_per_capita).17 1.837182573e-1
#> 41 te(gini_index,gdp_per_capita).18 -3.674527732e-1
#> 42 te(gini_index,gdp_per_capita).19 -2.065892592e-1
#> 43 te(gini_index,gdp_per_capita).20 1.688851234e-1
#> 44 te(gini_index,gdp_per_capita).21 3.670049804e-1
#> 45 te(gini_index,gdp_per_capita).22 4.994908252e-1
#> 46 te(gini_index,gdp_per_capita).23 4.325636563e-1
#> 47 te(gini_index,gdp_per_capita).24 2.548688160e-1
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9464494757 0.6150541202 4.570217924e-1
#> 2 observed 0.9464494757 0.4864079381 2.629026647e-1
#> 3 estimate 0.9464494757 0.4655127094 9.695469040e-3
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = beipr_gam_3_by_misfs,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_3_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(mbepr_beipr_gam_3_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(19.864)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.26110956 0.02990933 -75.59880 < 2.22e-16 ***
#> year2009 0.18657418 0.03614334 5.16206 0.00000024424 ***
#> year2011 0.18934856 0.03698799 5.11919 0.00000030685 ***
#> year2012 0.18524859 0.03859079 4.80033 0.00000158403 ***
#> year2013 0.32125482 0.03800938 8.45199 < 2.22e-16 ***
#> year2014 0.44275762 0.03852650 11.49229 < 2.22e-16 ***
#> year2015 0.39136231 0.04165843 9.39455 < 2.22e-16 ***
#> year2016 0.44803384 0.04254300 10.53132 < 2.22e-16 ***
#> year2017 0.38823352 0.04129933 9.40048 < 2.22e-16 ***
#> year2018 0.41050953 0.03919475 10.47359 < 2.22e-16 ***
#> year2019 0.45309294 0.04356627 10.40009 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.02077 1.041268 8.19951 0.0048905 **
#> te(gini_index,gdp_per_capita) 18.11940 19.554231 1027.57116 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.123 Deviance explained = 12.9%
#> -REML = -9501.9 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.226379351e-1 weak cohen1988
#> 2 SE 6.893174901e-3 <NA> <NA>
#> 3 Lower CI 1.091275605e-1 weak cohen1988
#> 4 Upper CI 1.361483096e-1 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.014016920e+1
#> 2 logLik 9.580520680e+3
#> 3 AIC -1.909614870e+4
#> 4 BIC -1.887253998e+4
#> 5 deviance 7.117102258e+3
#> 6 df.residual 7.240859831e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared 1.226379351e-1
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -8.287916410e-2
#> 2 mean((Intercept)) -2.261109559e+0
#> 3 year2009 1.865741833e-1
#> 4 year2011 1.893485625e-1
#> 5 year2012 1.852485891e-1
#> 6 year2013 3.212548185e-1
#> 7 year2014 4.427576210e-1
#> 8 year2015 3.913623111e-1
#> 9 year2016 4.480338422e-1
#> 10 year2017 3.882335213e-1
#> 11 year2018 4.105095322e-1
#> 12 year2019 4.530929441e-1
#> 13 mean(s(spei_12m)) 3.343720200e-3
#> 14 mean(te(gini_index,gdp_per_capita)) -2.013367945e-1
#> 15 s(spei_12m).1 -1.183891425e-4
#> 16 s(spei_12m).2 -1.334528614e-4
#> 17 s(spei_12m).3 -1.951257306e-5
#> 18 s(spei_12m).4 -9.645384905e-5
#> 19 s(spei_12m).5 -3.501842488e-5
#> 20 s(spei_12m).6 9.353217265e-5
#> 21 s(spei_12m).7 -4.019795500e-5
#> 22 s(spei_12m).8 5.916065103e-4
#> 23 s(spei_12m).9 2.985136792e-2
#> 24 te(gini_index,gdp_per_capita).1 -6.556604755e-1
#> 25 te(gini_index,gdp_per_capita).2 -4.253556020e-1
#> 26 te(gini_index,gdp_per_capita).3 -3.268514768e-1
#> 27 te(gini_index,gdp_per_capita).4 5.420572433e-1
#> 28 te(gini_index,gdp_per_capita).5 4.720109573e-1
#> 29 te(gini_index,gdp_per_capita).6 5.760015280e-2
#> 30 te(gini_index,gdp_per_capita).7 -3.244730945e-1
#> 31 te(gini_index,gdp_per_capita).8 1.024164612e-1
#> 32 te(gini_index,gdp_per_capita).9 -8.624828135e-1
#> 33 te(gini_index,gdp_per_capita).10 6.533478937e-1
#> 34 te(gini_index,gdp_per_capita).11 8.098775814e-2
#> 35 te(gini_index,gdp_per_capita).12 -9.390397193e-2
#> 36 te(gini_index,gdp_per_capita).13 4.447231485e-2
#> 37 te(gini_index,gdp_per_capita).14 -1.412189826e+0
#> 38 te(gini_index,gdp_per_capita).15 7.743257500e-1
#> 39 te(gini_index,gdp_per_capita).16 2.216821208e-1
#> 40 te(gini_index,gdp_per_capita).17 -3.912953897e-2
#> 41 te(gini_index,gdp_per_capita).18 1.250515717e-1
#> 42 te(gini_index,gdp_per_capita).19 -2.005190509e+0
#> 43 te(gini_index,gdp_per_capita).20 8.146573496e-1
#> 44 te(gini_index,gdp_per_capita).21 1.388504646e+0
#> 45 te(gini_index,gdp_per_capita).22 5.053862750e-1
#> 46 te(gini_index,gdp_per_capita).23 5.504320109e-1
#> 47 te(gini_index,gdp_per_capita).24 -5.019778266e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9420895447 0.5836182392 0.3501207456
#> 2 observed 0.9420895447 0.5455348897 0.1024102286
#> 3 estimate 0.9420895447 0.4793905047 0.01046755054
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.222)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.41284681 0.01544003 -156.27216 < 2.22e-16 ***
#> year2009 0.15627995 0.02013884 7.76013 8.4845e-15 ***
#> year2011 0.15719654 0.01995409 7.87791 3.3290e-15 ***
#> year2012 0.09868045 0.02164855 4.55829 5.1571e-06 ***
#> year2013 0.24957222 0.02071353 12.04875 < 2.22e-16 ***
#> year2014 0.25448240 0.02187936 11.63116 < 2.22e-16 ***
#> year2015 0.25530574 0.02096622 12.17701 < 2.22e-16 ***
#> year2016 0.25053660 0.02150300 11.65124 < 2.22e-16 ***
#> year2017 0.24614222 0.02156012 11.41655 < 2.22e-16 ***
#> year2018 0.21630095 0.02179149 9.92594 < 2.22e-16 ***
#> year2019 0.19263680 0.02261202 8.51922 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.581591 5.702138 25.74091 0.00027842 ***
#> te(gini_index,gdp_per_capita) 18.141427 19.135790 2191.28265 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00514 Deviance explained = 9.14%
#> -REML = -41930 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.372301717e+1
#> 2 logLik 4.202198817e+4
#> 3 AIC -8.397111148e+4
#> 4 BIC -8.366957474e+4
#> 5 deviance 2.914746739e+4
#> 6 df.residual 2.901127698e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -5.137377310e-3
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -7.937436818e-2
#> 2 mean((Intercept)) -2.412846810e+0
#> 3 year2009 1.562799455e-1
#> 4 year2011 1.571965415e-1
#> 5 year2012 9.868044570e-2
#> 6 year2013 2.495722170e-1
#> 7 year2014 2.544823989e-1
#> 8 year2015 2.553057421e-1
#> 9 year2016 2.505365974e-1
#> 10 year2017 2.461422192e-1
#> 11 year2018 2.163009527e-1
#> 12 year2019 1.926368027e-1
#> 13 mean(s(spei_12m)) 2.220722510e-2
#> 14 mean(te(gini_index,gdp_per_capita)) -1.398593450e-1
#> 15 s(spei_12m).1 7.470939163e-2
#> 16 s(spei_12m).2 2.060639235e-2
#> 17 s(spei_12m).3 2.607572959e-2
#> 18 s(spei_12m).4 1.127371402e-2
#> 19 s(spei_12m).5 -1.992804321e-3
#> 20 s(spei_12m).6 6.510494472e-3
#> 21 s(spei_12m).7 -3.641605409e-3
#> 22 s(spei_12m).8 -1.791678280e-2
#> 23 s(spei_12m).9 8.424049641e-2
#> 24 te(gini_index,gdp_per_capita).1 -1.232318746e+0
#> 25 te(gini_index,gdp_per_capita).2 -1.377029617e+0
#> 26 te(gini_index,gdp_per_capita).3 -1.446143511e+0
#> 27 te(gini_index,gdp_per_capita).4 1.588242862e+1
#> 28 te(gini_index,gdp_per_capita).5 3.168539699e-1
#> 29 te(gini_index,gdp_per_capita).6 2.313719071e-1
#> 30 te(gini_index,gdp_per_capita).7 -3.359799879e-1
#> 31 te(gini_index,gdp_per_capita).8 3.106900588e-1
#> 32 te(gini_index,gdp_per_capita).9 5.303062177e+0
#> 33 te(gini_index,gdp_per_capita).10 4.587259247e-1
#> 34 te(gini_index,gdp_per_capita).11 1.898342220e-1
#> 35 te(gini_index,gdp_per_capita).12 -7.495064321e-2
#> 36 te(gini_index,gdp_per_capita).13 1.633345198e-1
#> 37 te(gini_index,gdp_per_capita).14 1.625577822e+0
#> 38 te(gini_index,gdp_per_capita).15 5.277746590e-1
#> 39 te(gini_index,gdp_per_capita).16 5.006469800e-1
#> 40 te(gini_index,gdp_per_capita).17 -2.737283618e-1
#> 41 te(gini_index,gdp_per_capita).18 6.542806015e-1
#> 42 te(gini_index,gdp_per_capita).19 -1.975342407e+0
#> 43 te(gini_index,gdp_per_capita).20 3.763151288e-1
#> 44 te(gini_index,gdp_per_capita).21 -4.358908280e-1
#> 45 te(gini_index,gdp_per_capita).22 -7.976308733e-1
#> 46 te(gini_index,gdp_per_capita).23 -6.930983309e-1
#> 47 te(gini_index,gdp_per_capita).24 -2.125540756e+1
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9275958816 0.4992052948 2.793717330e-1
#> 2 observed 0.9275958816 0.2133469931 6.540552484e-2
#> 3 estimate 0.9275958816 0.3728479981 3.827404525e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(36.38)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.762100351 0.016528791 -106.60794 < 2.22e-16 ***
#> year2009 0.040616092 0.016004302 2.53782 0.01115442 *
#> year2011 -0.011530744 0.018166960 -0.63471 0.52561785
#> year2012 -0.114974674 0.024833559 -4.62981 0.00000366 ***
#> year2013 -0.033710114 0.018986031 -1.77552 0.07581175 .
#> year2014 -0.017840139 0.018370682 -0.97112 0.33148848
#> year2015 -0.087072399 0.025785421 -3.37681 0.00073332 ***
#> year2016 -0.072810365 0.028339260 -2.56924 0.01019218 *
#> year2017 -0.019535221 0.024035329 -0.81277 0.41634930
#> year2018 -0.017910866 0.024722667 -0.72447 0.46877635
#> year2019 -0.007282555 0.024084815 -0.30237 0.76236909
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.407795 8.906442 71.01221 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 16.085850 17.531023 1720.11854 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.127 Deviance explained = 12.2%
#> -REML = -27616 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.265527675e-1 weak cohen1988
#> 2 SE 4.357716704e-3 <NA> <NA>
#> 3 Lower CI 1.180117997e-1 weak cohen1988
#> 4 Upper CI 1.350937353e-1 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.549364570e+1
#> 2 logLik 2.771416957e+4
#> 3 AIC -5.535149222e+4
#> 4 BIC -5.505053315e+4
#> 5 deviance 1.819512600e+4
#> 6 df.residual 1.859750635e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 1.265527675e-1
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 7.986986201e-2
#> 2 mean((Intercept)) -1.762100351e+0
#> 3 year2009 4.061609199e-2
#> 4 year2011 -1.153074360e-2
#> 5 year2012 -1.149746744e-1
#> 6 year2013 -3.371011393e-2
#> 7 year2014 -1.784013892e-2
#> 8 year2015 -8.707239899e-2
#> 9 year2016 -7.281036466e-2
#> 10 year2017 -1.953522123e-2
#> 11 year2018 -1.791086600e-2
#> 12 year2019 -7.282554817e-3
#> 13 mean(s(spei_12m)) -3.840474957e-2
#> 14 mean(te(gini_index,gdp_per_capita)) 2.485028337e-1
#> 15 s(spei_12m).1 -1.072273411e-1
#> 16 s(spei_12m).2 -1.154165089e-1
#> 17 s(spei_12m).3 4.945723250e-2
#> 18 s(spei_12m).4 -1.439433298e-1
#> 19 s(spei_12m).5 6.996767967e-2
#> 20 s(spei_12m).6 -1.097231487e-1
#> 21 s(spei_12m).7 1.370875641e-1
#> 22 s(spei_12m).8 -3.868453717e-1
#> 23 s(spei_12m).9 2.610004778e-1
#> 24 te(gini_index,gdp_per_capita).1 -5.166978009e-1
#> 25 te(gini_index,gdp_per_capita).2 -5.095557142e-1
#> 26 te(gini_index,gdp_per_capita).3 -4.531864512e-1
#> 27 te(gini_index,gdp_per_capita).4 -5.534340920e+0
#> 28 te(gini_index,gdp_per_capita).5 2.227672830e-1
#> 29 te(gini_index,gdp_per_capita).6 5.372567225e-2
#> 30 te(gini_index,gdp_per_capita).7 -2.601701383e-1
#> 31 te(gini_index,gdp_per_capita).8 1.030327767e-1
#> 32 te(gini_index,gdp_per_capita).9 -1.146912022e+0
#> 33 te(gini_index,gdp_per_capita).10 4.698944228e-1
#> 34 te(gini_index,gdp_per_capita).11 5.982159232e-2
#> 35 te(gini_index,gdp_per_capita).12 -5.683294936e-2
#> 36 te(gini_index,gdp_per_capita).13 -4.567634995e-2
#> 37 te(gini_index,gdp_per_capita).14 1.431379131e-1
#> 38 te(gini_index,gdp_per_capita).15 7.526157224e-1
#> 39 te(gini_index,gdp_per_capita).16 3.526763759e-1
#> 40 te(gini_index,gdp_per_capita).17 -2.919630870e-1
#> 41 te(gini_index,gdp_per_capita).18 3.475163719e-1
#> 42 te(gini_index,gdp_per_capita).19 1.499146412e+0
#> 43 te(gini_index,gdp_per_capita).20 9.077592358e-1
#> 44 te(gini_index,gdp_per_capita).21 3.043757509e-1
#> 45 te(gini_index,gdp_per_capita).22 1.762325650e-1
#> 46 te(gini_index,gdp_per_capita).23 1.442425831e-1
#> 47 te(gini_index,gdp_per_capita).24 9.242458765e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9613644170 0.8446129978 5.458642390e-1
#> 2 observed 0.9613644170 0.2987294683 1.836180887e-1
#> 3 estimate 0.9613644170 0.7107244449 5.201532273e-3
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(28.338)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.33610450 0.03499282 -38.18225 < 2.22e-16 ***
#> year2009 0.09001304 0.04038002 2.22915 0.0258040 *
#> year2011 0.04804506 0.04300756 1.11713 0.2639385
#> year2012 -0.02774088 0.04561549 -0.60815 0.5430906
#> year2013 0.09277751 0.04526176 2.04980 0.0403841 *
#> year2014 0.12393361 0.04592994 2.69832 0.0069691 **
#> year2015 0.02278094 0.05622437 0.40518 0.6853458
#> year2016 0.04023587 0.05044976 0.79754 0.4251356
#> year2017 0.07525792 0.05020046 1.49915 0.1338352
#> year2018 0.06523783 0.04783426 1.36383 0.1726208
#> year2019 0.08298043 0.04818955 1.72196 0.0850769 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.002721 1.005432 1.05766 0.30509
#> te(gini_index,gdp_per_capita) 13.002208 15.125685 390.07962 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.188 Deviance explained = 19%
#> -REML = -2964.5 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0.1882061432 moderate cohen1988
#> 2 SE 0.01335159388 <NA> <NA>
#> 3 Lower CI 0.1620375001 moderate cohen1988
#> 4 Upper CI 0.2143747864 moderate cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.500492919e+1
#> 2 logLik 3.019197024e+3
#> 3 AIC -5.982153705e+3
#> 4 BIC -5.817956320e+3
#> 5 deviance 2.456029500e+3
#> 6 df.residual 2.512995071e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 1.882061432e-1
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.389202638e-2
#> 2 mean((Intercept)) -1.336104497e+0
#> 3 year2009 9.001304327e-2
#> 4 year2011 4.804505631e-2
#> 5 year2012 -2.774088097e-2
#> 6 year2013 9.277750613e-2
#> 7 year2014 1.239336123e-1
#> 8 year2015 2.278094348e-2
#> 9 year2016 4.023586851e-2
#> 10 year2017 7.525792199e-2
#> 11 year2018 6.523783236e-2
#> 12 year2019 8.298042727e-2
#> 13 mean(s(spei_12m)) 1.510173110e-3
#> 14 mean(te(gini_index,gdp_per_capita)) -1.426073136e-2
#> 15 s(spei_12m).1 -2.137951608e-5
#> 16 s(spei_12m).2 5.949304750e-6
#> 17 s(spei_12m).3 -1.151352833e-6
#> 18 s(spei_12m).4 4.795969543e-7
#> 19 s(spei_12m).5 -1.312179698e-6
#> 20 s(spei_12m).6 3.080323014e-7
#> 21 s(spei_12m).7 -2.725205338e-7
#> 22 s(spei_12m).8 3.992088277e-6
#> 23 s(spei_12m).9 1.360494454e-2
#> 24 te(gini_index,gdp_per_capita).1 -2.206324150e-2
#> 25 te(gini_index,gdp_per_capita).2 -2.142599619e-1
#> 26 te(gini_index,gdp_per_capita).3 -3.144377531e-1
#> 27 te(gini_index,gdp_per_capita).4 -1.278317687e+0
#> 28 te(gini_index,gdp_per_capita).5 6.059420784e-1
#> 29 te(gini_index,gdp_per_capita).6 -2.485431116e-1
#> 30 te(gini_index,gdp_per_capita).7 1.318362326e-1
#> 31 te(gini_index,gdp_per_capita).8 -5.403294380e-1
#> 32 te(gini_index,gdp_per_capita).9 -6.611084789e-1
#> 33 te(gini_index,gdp_per_capita).10 5.965493947e-1
#> 34 te(gini_index,gdp_per_capita).11 -1.082196576e-3
#> 35 te(gini_index,gdp_per_capita).12 5.710221542e-2
#> 36 te(gini_index,gdp_per_capita).13 -2.229016145e-1
#> 37 te(gini_index,gdp_per_capita).14 -4.843941526e-1
#> 38 te(gini_index,gdp_per_capita).15 5.586914133e-1
#> 39 te(gini_index,gdp_per_capita).16 -7.252068559e-2
#> 40 te(gini_index,gdp_per_capita).17 1.861321706e-1
#> 41 te(gini_index,gdp_per_capita).18 -4.302729290e-1
#> 42 te(gini_index,gdp_per_capita).19 -2.706966724e-1
#> 43 te(gini_index,gdp_per_capita).20 2.795492465e-1
#> 44 te(gini_index,gdp_per_capita).21 4.392165134e-1
#> 45 te(gini_index,gdp_per_capita).22 4.782570926e-1
#> 46 te(gini_index,gdp_per_capita).23 3.271892543e-1
#> 47 te(gini_index,gdp_per_capita).24 7.582047580e-1
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9464494757 0.6150541202 4.570217924e-1
#> 2 observed 0.9464494757 0.5721258327 2.953352797e-1
#> 3 estimate 0.9464494757 0.4655127094 9.695469040e-3
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_beipr_gam_3_by_misfs,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_3_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(maper_gam_3_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.384)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.73346658 0.04104188 -90.96723 < 2.22e-16 ***
#> year2009 0.02450501 0.05802295 0.42233 0.6727820
#> year2011 0.19704580 0.04995546 3.94443 0.0000799900209 ***
#> year2012 0.13813359 0.05375818 2.56954 0.0101835 *
#> year2013 0.25817974 0.05122611 5.04000 0.0000004655246 ***
#> year2014 0.28340033 0.05407015 5.24134 0.0000001594105 ***
#> year2015 0.17978275 0.05960435 3.01627 0.0025591 **
#> year2016 0.29334757 0.05922263 4.95330 0.0000007296459 ***
#> year2017 0.33229810 0.05715417 5.81407 0.0000000060973 ***
#> year2018 0.17434396 0.05396910 3.23044 0.0012360 **
#> year2019 0.08223870 0.06233016 1.31940 0.1870339
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 4.248646 5.369023 16.35531 0.0082676 **
#> te(gini_index,gdp_per_capita) 12.623438 14.461457 370.40161 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0261 Deviance explained = 6.48%
#> -REML = -19233 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.787208422e+1
#> 2 logLik 1.928775653e+4
#> 3 AIC -3.851185211e+4
#> 4 BIC -3.829248761e+4
#> 5 deviance 7.679191156e+3
#> 6 df.residual 7.243127916e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared -2.607898815e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.359438966e-2
#> 2 mean((Intercept)) -3.733466576e+0
#> 3 year2009 2.450500892e-2
#> 4 year2011 1.970457961e-1
#> 5 year2012 1.381335852e-1
#> 6 year2013 2.581797353e-1
#> 7 year2014 2.834003259e-1
#> 8 year2015 1.797827495e-1
#> 9 year2016 2.933475748e-1
#> 10 year2017 3.322981004e-1
#> 11 year2018 1.743439556e-1
#> 12 year2019 8.223870417e-2
#> 13 mean(s(spei_12m)) 3.398904539e-2
#> 14 mean(te(gini_index,gdp_per_capita)) 1.775568694e-2
#> 15 s(spei_12m).1 1.864848736e-1
#> 16 s(spei_12m).2 -3.038103354e-2
#> 17 s(spei_12m).3 1.066732211e-3
#> 18 s(spei_12m).4 -1.555935772e-2
#> 19 s(spei_12m).5 -1.424133341e-2
#> 20 s(spei_12m).6 7.087890556e-3
#> 21 s(spei_12m).7 -9.590646808e-3
#> 22 s(spei_12m).8 1.719201702e-2
#> 23 s(spei_12m).9 1.638422666e-1
#> 24 te(gini_index,gdp_per_capita).1 -6.526371992e-1
#> 25 te(gini_index,gdp_per_capita).2 -6.723661740e-1
#> 26 te(gini_index,gdp_per_capita).3 -5.918966832e-1
#> 27 te(gini_index,gdp_per_capita).4 -3.501989130e+0
#> 28 te(gini_index,gdp_per_capita).5 -1.996066182e-2
#> 29 te(gini_index,gdp_per_capita).6 1.605975487e-1
#> 30 te(gini_index,gdp_per_capita).7 -4.254557007e-1
#> 31 te(gini_index,gdp_per_capita).8 2.912379670e-1
#> 32 te(gini_index,gdp_per_capita).9 -1.025100533e+0
#> 33 te(gini_index,gdp_per_capita).10 1.859576677e-1
#> 34 te(gini_index,gdp_per_capita).11 1.731129477e-1
#> 35 te(gini_index,gdp_per_capita).12 -6.144073907e-2
#> 36 te(gini_index,gdp_per_capita).13 1.425040080e-1
#> 37 te(gini_index,gdp_per_capita).14 -1.499858438e-1
#> 38 te(gini_index,gdp_per_capita).15 3.869104759e-1
#> 39 te(gini_index,gdp_per_capita).16 4.663127935e-1
#> 40 te(gini_index,gdp_per_capita).17 7.557062864e-2
#> 41 te(gini_index,gdp_per_capita).18 3.493856372e-1
#> 42 te(gini_index,gdp_per_capita).19 7.169519606e-1
#> 43 te(gini_index,gdp_per_capita).20 2.762318088e-1
#> 44 te(gini_index,gdp_per_capita).21 7.599898598e-2
#> 45 te(gini_index,gdp_per_capita).22 -8.259154531e-2
#> 46 te(gini_index,gdp_per_capita).23 -3.091525752e-1
#> 47 te(gini_index,gdp_per_capita).24 4.617940843e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9420895447 0.5836182392 0.3501207456
#> 2 observed 0.9420895447 0.4757696016 0.04300342020
#> 3 estimate 0.9420895447 0.4793905047 0.01046755054
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(26.451)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -4.24946263 0.02025034 -209.84650 < 2.22e-16 ***
#> year2009 0.18939868 0.02686504 7.05001 1.7891e-12 ***
#> year2011 0.21047686 0.02643413 7.96231 1.6885e-15 ***
#> year2012 0.07436565 0.02861895 2.59848 0.0093639 **
#> year2013 0.37753834 0.02776169 13.59925 < 2.22e-16 ***
#> year2014 0.29259610 0.02906827 10.06582 < 2.22e-16 ***
#> year2015 0.36885861 0.02775309 13.29072 < 2.22e-16 ***
#> year2016 0.37871180 0.02834834 13.35922 < 2.22e-16 ***
#> year2017 0.43071661 0.02859091 15.06481 < 2.22e-16 ***
#> year2018 0.22397123 0.02890018 7.74982 9.2022e-15 ***
#> year2019 0.15744724 0.02991504 5.26315 1.4161e-07 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.117519 8.799981 273.4042 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.910886 20.009740 2608.8432 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0041 Deviance explained = 10.6%
#> -REML = -97345 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.099472321e-3 very weak (negligible) cohen1988
#> 2 SE 7.157454056e-4 <NA> <NA>
#> 3 Lower CI 2.696637104e-3 very weak (negligible) cohen1988
#> 4 Upper CI 5.502307538e-3 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.802840435e+1
#> 2 logLik 9.745044429e+4
#> 3 AIC -1.948192691e+5
#> 4 BIC -1.944815033e+5
#> 5 deviance 3.094611376e+4
#> 6 df.residual 2.900697160e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared 4.099472321e-3
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 1.524895547e-3
#> 2 mean((Intercept)) -4.249462627e+0
#> 3 year2009 1.893986827e-1
#> 4 year2011 2.104768568e-1
#> 5 year2012 7.436565165e-2
#> 6 year2013 3.775383372e-1
#> 7 year2014 2.925960971e-1
#> 8 year2015 3.688586144e-1
#> 9 year2016 3.787118042e-1
#> 10 year2017 4.307166053e-1
#> 11 year2018 2.239712301e-1
#> 12 year2019 1.574472407e-1
#> 13 mean(s(spei_12m)) -7.182056926e-3
#> 14 mean(te(gini_index,gdp_per_capita)) 6.987980930e-2
#> 15 s(spei_12m).1 1.800235264e-1
#> 16 s(spei_12m).2 -1.482051603e-1
#> 17 s(spei_12m).3 5.667018832e-2
#> 18 s(spei_12m).4 2.283860846e-1
#> 19 s(spei_12m).5 -8.716226679e-2
#> 20 s(spei_12m).6 2.791472137e-1
#> 21 s(spei_12m).7 -1.174688605e-1
#> 22 s(spei_12m).8 -5.828332364e-1
#> 23 s(spei_12m).9 1.268039987e-1
#> 24 te(gini_index,gdp_per_capita).1 -8.044438444e-1
#> 25 te(gini_index,gdp_per_capita).2 -9.419494068e-1
#> 26 te(gini_index,gdp_per_capita).3 -1.003552452e+0
#> 27 te(gini_index,gdp_per_capita).4 5.154215357e-1
#> 28 te(gini_index,gdp_per_capita).5 4.627941210e-1
#> 29 te(gini_index,gdp_per_capita).6 1.393900485e-2
#> 30 te(gini_index,gdp_per_capita).7 -4.042617727e-1
#> 31 te(gini_index,gdp_per_capita).8 -4.785681259e-2
#> 32 te(gini_index,gdp_per_capita).9 6.364770528e-1
#> 33 te(gini_index,gdp_per_capita).10 7.757228400e-1
#> 34 te(gini_index,gdp_per_capita).11 2.140928668e-1
#> 35 te(gini_index,gdp_per_capita).12 -4.901736950e-2
#> 36 te(gini_index,gdp_per_capita).13 5.958796520e-2
#> 37 te(gini_index,gdp_per_capita).14 6.771764502e-1
#> 38 te(gini_index,gdp_per_capita).15 9.022708031e-1
#> 39 te(gini_index,gdp_per_capita).16 4.136674682e-1
#> 40 te(gini_index,gdp_per_capita).17 -6.084435235e-2
#> 41 te(gini_index,gdp_per_capita).18 4.508746931e-1
#> 42 te(gini_index,gdp_per_capita).19 7.224198122e-1
#> 43 te(gini_index,gdp_per_capita).20 5.891617746e-1
#> 44 te(gini_index,gdp_per_capita).21 4.725668235e-1
#> 45 te(gini_index,gdp_per_capita).22 -1.271219996e+0
#> 46 te(gini_index,gdp_per_capita).23 -1.672837134e+0
#> 47 te(gini_index,gdp_per_capita).24 1.026925352e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9275958816 0.4992052948 2.793717330e-1
#> 2 observed 0.9275958816 0.3546033663 9.987968201e-2
#> 3 estimate 0.9275958816 0.3728479981 3.827404525e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(55.942)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.47268260 0.02396811 -144.88766 < 2.22e-16 ***
#> year2009 0.11399245 0.02412185 4.72569 0.000002293319784105 ***
#> year2011 0.19892649 0.02634536 7.55072 0.000000000000043285 ***
#> year2012 -0.01515274 0.03580161 -0.42324 0.6721189
#> year2013 0.11484222 0.02699430 4.25431 0.000020969193241340 ***
#> year2014 0.07917419 0.02634827 3.00491 0.0026566 **
#> year2015 0.03304342 0.03699320 0.89323 0.3717342
#> year2016 0.10594640 0.04056898 2.61151 0.0090143 **
#> year2017 0.03949576 0.03447254 1.14572 0.2519125
#> year2018 -0.09500500 0.03580470 -2.65342 0.0079680 **
#> year2019 -0.05623283 0.03470991 -1.62008 0.1052151
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.127516 8.208168 76.74172 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 13.966254 15.370672 691.04221 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0204 Deviance explained = 5.86%
#> -REML = -47469 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.037359509e-2 weak cohen1988
#> 2 SE 1.961014544e-3 <NA> <NA>
#> 3 Lower CI 1.653007721e-2 very weak (negligible) cohen1988
#> 4 Upper CI 2.421711297e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.209376921e+1
#> 2 logLik 4.754628763e+4
#> 3 AIC -9.502156139e+4
#> 4 BIC -9.474344654e+4
#> 5 deviance 1.837163406e+4
#> 6 df.residual 1.860090623e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 2.037359509e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.935658449e-2
#> 2 mean((Intercept)) -3.472682603e+0
#> 3 year2009 1.139924517e-1
#> 4 year2011 1.989264929e-1
#> 5 year2012 -1.515273853e-2
#> 6 year2013 1.148422150e-1
#> 7 year2014 7.917418855e-2
#> 8 year2015 3.304341830e-2
#> 9 year2016 1.059463973e-1
#> 10 year2017 3.949576069e-2
#> 11 year2018 -9.500499711e-2
#> 12 year2019 -5.623283478e-2
#> 13 mean(s(spei_12m)) -2.243424998e-2
#> 14 mean(te(gini_index,gdp_per_capita)) 9.599461587e-2
#> 15 s(spei_12m).1 -5.733006143e-2
#> 16 s(spei_12m).2 -1.035713643e-1
#> 17 s(spei_12m).3 1.140584453e-1
#> 18 s(spei_12m).4 -1.146246716e-1
#> 19 s(spei_12m).5 8.508208634e-2
#> 20 s(spei_12m).6 -7.900618837e-2
#> 21 s(spei_12m).7 1.225952740e-2
#> 22 s(spei_12m).8 -2.209733940e-1
#> 23 s(spei_12m).9 1.621973708e-1
#> 24 te(gini_index,gdp_per_capita).1 -6.729672970e-1
#> 25 te(gini_index,gdp_per_capita).2 -7.961051055e-1
#> 26 te(gini_index,gdp_per_capita).3 -8.828229263e-1
#> 27 te(gini_index,gdp_per_capita).4 -6.877117458e+0
#> 28 te(gini_index,gdp_per_capita).5 2.501397753e-2
#> 29 te(gini_index,gdp_per_capita).6 -6.930706014e-3
#> 30 te(gini_index,gdp_per_capita).7 -1.817279255e-1
#> 31 te(gini_index,gdp_per_capita).8 2.281804762e-2
#> 32 te(gini_index,gdp_per_capita).9 -1.710024479e+0
#> 33 te(gini_index,gdp_per_capita).10 1.308286125e-1
#> 34 te(gini_index,gdp_per_capita).11 4.853494061e-2
#> 35 te(gini_index,gdp_per_capita).12 -3.424118298e-3
#> 36 te(gini_index,gdp_per_capita).13 1.022315614e-2
#> 37 te(gini_index,gdp_per_capita).14 -1.762721429e-1
#> 38 te(gini_index,gdp_per_capita).15 3.399162825e-1
#> 39 te(gini_index,gdp_per_capita).16 2.384757516e-1
#> 40 te(gini_index,gdp_per_capita).17 -9.926595833e-2
#> 41 te(gini_index,gdp_per_capita).18 2.509679661e-1
#> 42 te(gini_index,gdp_per_capita).19 1.452889817e+0
#> 43 te(gini_index,gdp_per_capita).20 1.842994498e-1
#> 44 te(gini_index,gdp_per_capita).21 1.130646516e-1
#> 45 te(gini_index,gdp_per_capita).22 8.041115731e-2
#> 46 te(gini_index,gdp_per_capita).23 7.278992382e-2
#> 47 te(gini_index,gdp_per_capita).24 1.074029516e+1
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9613644170 0.8446129978 5.458642390e-1
#> 2 observed 0.9613644170 0.4579109894 4.838741590e-2
#> 3 estimate 0.9613644170 0.7107244449 5.201532273e-3
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(91.14)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.4857750677 0.0406219138 -85.81021 < 2.22e-16 ***
#> year2009 0.0410538281 0.0526859704 0.77922 0.43585163
#> year2011 -0.0772799868 0.0534653254 -1.44542 0.14833923
#> year2012 -0.0875375123 0.0557086564 -1.57134 0.11610256
#> year2013 0.0344811835 0.0527583587 0.65357 0.51339006
#> year2014 -0.0166816924 0.0540773690 -0.30848 0.75771844
#> year2015 0.0008749625 0.0683956423 0.01279 0.98979321
#> year2016 0.0168850667 0.0594492241 0.28403 0.77639121
#> year2017 -0.0334522769 0.0595925658 -0.56135 0.57455908
#> year2018 -0.2040584340 0.0572673081 -3.56326 0.00036627 ***
#> year2019 -0.2026920999 0.0578227409 -3.50540 0.00045591 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.006124 1.012218 0.55997 0.45857
#> te(gini_index,gdp_per_capita) 6.111906 7.494555 39.81401 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0261 Deviance explained = 4.41%
#> -REML = -7006.7 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.608824754e-2 weak cohen1988
#> 2 SE 5.963655059e-3 <NA> <NA>
#> 3 Lower CI 1.439969841e-2 very weak (negligible) cohen1988
#> 4 Upper CI 3.777679667e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.811802961e+1
#> 2 logLik 7.039032592e+3
#> 3 AIC -1.403705164e+4
#> 4 BIC -1.391730990e+4
#> 5 deviance 2.474162995e+3
#> 6 df.residual 2.519881970e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 2.608824754e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.350050177e-1
#> 2 mean((Intercept)) -3.485775068e+0
#> 3 year2009 4.105382811e-2
#> 4 year2011 -7.727998680e-2
#> 5 year2012 -8.753751227e-2
#> 6 year2013 3.448118355e-2
#> 7 year2014 -1.668169241e-2
#> 8 year2015 8.749625208e-4
#> 9 year2016 1.688506672e-2
#> 10 year2017 -3.345227687e-2
#> 11 year2018 -2.040584340e-1
#> 12 year2019 -2.026920999e-1
#> 13 mean(s(spei_12m)) 1.445047203e-3
#> 14 mean(te(gini_index,gdp_per_capita)) -8.079350722e-2
#> 15 s(spei_12m).1 -5.226934587e-5
#> 16 s(spei_12m).2 6.343864285e-5
#> 17 s(spei_12m).3 -9.155629613e-6
#> 18 s(spei_12m).4 -2.403559537e-5
#> 19 s(spei_12m).5 -4.403602830e-6
#> 20 s(spei_12m).6 2.343791971e-5
#> 21 s(spei_12m).7 5.923302300e-6
#> 22 s(spei_12m).8 1.399887555e-4
#> 23 s(spei_12m).9 1.286250038e-2
#> 24 te(gini_index,gdp_per_capita).1 1.456151876e-1
#> 25 te(gini_index,gdp_per_capita).2 1.393928745e-1
#> 26 te(gini_index,gdp_per_capita).3 1.125821585e-1
#> 27 te(gini_index,gdp_per_capita).4 -2.118405386e+0
#> 28 te(gini_index,gdp_per_capita).5 7.951360531e-2
#> 29 te(gini_index,gdp_per_capita).6 -6.355902841e-3
#> 30 te(gini_index,gdp_per_capita).7 1.025068859e-1
#> 31 te(gini_index,gdp_per_capita).8 -6.730910833e-2
#> 32 te(gini_index,gdp_per_capita).9 -8.554103836e-1
#> 33 te(gini_index,gdp_per_capita).10 7.650589212e-2
#> 34 te(gini_index,gdp_per_capita).11 2.933431916e-2
#> 35 te(gini_index,gdp_per_capita).12 5.927421214e-2
#> 36 te(gini_index,gdp_per_capita).13 -2.381489381e-2
#> 37 te(gini_index,gdp_per_capita).14 -4.938093450e-1
#> 38 te(gini_index,gdp_per_capita).15 4.499889915e-2
#> 39 te(gini_index,gdp_per_capita).16 -3.988791849e-2
#> 40 te(gini_index,gdp_per_capita).17 4.538930274e-2
#> 41 te(gini_index,gdp_per_capita).18 -1.115786204e-1
#> 42 te(gini_index,gdp_per_capita).19 -5.760021820e-2
#> 43 te(gini_index,gdp_per_capita).20 -3.118267883e-1
#> 44 te(gini_index,gdp_per_capita).21 -2.757039505e-1
#> 45 te(gini_index,gdp_per_capita).22 -2.484868324e-1
#> 46 te(gini_index,gdp_per_capita).23 -2.179460767e-1
#> 47 te(gini_index,gdp_per_capita).24 2.053977914e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9464494757 0.6150541202 4.570217924e-1
#> 2 observed 0.9464494757 0.5723242671 5.948799928e-2
#> 3 estimate 0.9464494757 0.4655127094 9.695469040e-3
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_gam_3_by_misfs,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER"
)
maper_gam_3_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(mpepr_gam_3_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(33.789)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.68363570 0.03870327 -95.17636 < 2.22e-16 ***
#> year2009 -0.07833377 0.05468861 -1.43236 0.15204085
#> year2011 0.25723128 0.04629774 5.55602 0.00000002759908410 ***
#> year2012 0.16752824 0.05039011 3.32463 0.00088537 ***
#> year2013 0.34641288 0.04758107 7.28048 0.00000000000033264 ***
#> year2014 0.21651009 0.05128515 4.22169 0.00002424753719187 ***
#> year2015 0.32973500 0.05523984 5.96915 0.00000000238489943 ***
#> year2016 0.36141104 0.05497985 6.57352 0.00000000004914027 ***
#> year2017 0.44665494 0.05309288 8.41271 < 2.22e-16 ***
#> year2018 0.42610847 0.04978301 8.55932 < 2.22e-16 ***
#> year2019 0.22466332 0.05789968 3.88022 0.00010436 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 5.401108 6.655752 32.65531 0.000018592 ***
#> te(gini_index,gdp_per_capita) 16.438386 18.143543 337.22959 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0437 Deviance explained = 7.85%
#> -REML = -18040 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.283949464e+1
#> 2 logLik 1.811618275e+4
#> 3 AIC -3.615876691e+4
#> 4 BIC -3.590515908e+4
#> 5 deviance 7.659719968e+3
#> 6 df.residual 7.238160505e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared -4.374959004e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.956937228e-1
#> 2 mean((Intercept)) -3.683635701e+0
#> 3 year2009 -7.833377360e-2
#> 4 year2011 2.572312763e-1
#> 5 year2012 1.675282420e-1
#> 6 year2013 3.464128751e-1
#> 7 year2014 2.165100930e-1
#> 8 year2015 3.297350035e-1
#> 9 year2016 3.614110418e-1
#> 10 year2017 4.466549393e-1
#> 11 year2018 4.261084716e-1
#> 12 year2019 2.246633182e-1
#> 13 mean(s(spei_12m)) 2.615353326e-2
#> 14 mean(te(gini_index,gdp_per_capita)) -5.108413079e-1
#> 15 s(spei_12m).1 2.012286707e-1
#> 16 s(spei_12m).2 3.551967461e-2
#> 17 s(spei_12m).3 3.739842943e-2
#> 18 s(spei_12m).4 8.997288434e-4
#> 19 s(spei_12m).5 -3.237038690e-2
#> 20 s(spei_12m).6 -3.397356860e-2
#> 21 s(spei_12m).7 1.354414552e-2
#> 22 s(spei_12m).8 -1.502555280e-1
#> 23 s(spei_12m).9 1.633906338e-1
#> 24 te(gini_index,gdp_per_capita).1 -8.601132846e-1
#> 25 te(gini_index,gdp_per_capita).2 -7.221140993e-1
#> 26 te(gini_index,gdp_per_capita).3 -2.786772157e-1
#> 27 te(gini_index,gdp_per_capita).4 -1.101479233e+1
#> 28 te(gini_index,gdp_per_capita).5 3.686595896e-1
#> 29 te(gini_index,gdp_per_capita).6 4.860296996e-1
#> 30 te(gini_index,gdp_per_capita).7 -5.941588393e-1
#> 31 te(gini_index,gdp_per_capita).8 5.601458132e-1
#> 32 te(gini_index,gdp_per_capita).9 5.739362772e-1
#> 33 te(gini_index,gdp_per_capita).10 2.899456401e-1
#> 34 te(gini_index,gdp_per_capita).11 2.014902995e-1
#> 35 te(gini_index,gdp_per_capita).12 -1.449848030e-1
#> 36 te(gini_index,gdp_per_capita).13 2.407479604e-1
#> 37 te(gini_index,gdp_per_capita).14 1.967749694e+0
#> 38 te(gini_index,gdp_per_capita).15 5.118470965e-1
#> 39 te(gini_index,gdp_per_capita).16 5.764491408e-1
#> 40 te(gini_index,gdp_per_capita).17 -8.734873058e-2
#> 41 te(gini_index,gdp_per_capita).18 4.382761421e-1
#> 42 te(gini_index,gdp_per_capita).19 1.723242276e+0
#> 43 te(gini_index,gdp_per_capita).20 1.258616673e-1
#> 44 te(gini_index,gdp_per_capita).21 1.976387600e-1
#> 45 te(gini_index,gdp_per_capita).22 1.842638592e-1
#> 46 te(gini_index,gdp_per_capita).23 1.645645229e-1
#> 47 te(gini_index,gdp_per_capita).24 -7.168850527e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9420895447 0.5836182392 0.3501207456
#> 2 observed 0.9420895447 0.4869808423 0.1066714704
#> 3 estimate 0.9420895447 0.4793905047 0.01046755054
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(30.192)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -4.04547130 0.01932128 -209.37908 < 2.22e-16 ***
#> year2009 0.16608502 0.02551935 6.50820 0.0000000000760568 ***
#> year2011 0.20908600 0.02515885 8.31063 < 2.22e-16 ***
#> year2012 0.07570469 0.02725847 2.77729 0.0054814 **
#> year2013 0.28014395 0.02653731 10.55661 < 2.22e-16 ***
#> year2014 0.19412894 0.02776673 6.99142 0.0000000000027211 ***
#> year2015 0.34839820 0.02637488 13.20947 < 2.22e-16 ***
#> year2016 0.40626880 0.02686454 15.12287 < 2.22e-16 ***
#> year2017 0.53599476 0.02691441 19.91479 < 2.22e-16 ***
#> year2018 0.33116971 0.02730553 12.12830 < 2.22e-16 ***
#> year2019 0.25481566 0.02829299 9.00632 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.68701 8.97276 389.6116 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.41291 19.44782 2998.6572 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0117 Deviance explained = 12.7%
#> -REML = -85119 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.809992454e+1
#> 2 logLik 8.522523955e+4
#> 3 AIC -1.703696379e+5
#> 4 BIC -1.700350929e+5
#> 5 deviance 3.166261092e+4
#> 6 df.residual 2.900690008e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared -1.170467906e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 5.130538481e-2
#> 2 mean((Intercept)) -4.045471303e+0
#> 3 year2009 1.660850212e-1
#> 4 year2011 2.090859986e-1
#> 5 year2012 7.570469050e-2
#> 6 year2013 2.801439540e-1
#> 7 year2014 1.941289404e-1
#> 8 year2015 3.483981978e-1
#> 9 year2016 4.062687981e-1
#> 10 year2017 5.359947646e-1
#> 11 year2018 3.311697137e-1
#> 12 year2019 2.548156593e-1
#> 13 mean(s(spei_12m)) -3.177134780e-2
#> 14 mean(te(gini_index,gdp_per_capita)) 1.577939428e-1
#> 15 s(spei_12m).1 3.027505622e-1
#> 16 s(spei_12m).2 -4.472049658e-1
#> 17 s(spei_12m).3 2.015043202e-1
#> 18 s(spei_12m).4 4.306052678e-1
#> 19 s(spei_12m).5 -1.362570964e-1
#> 20 s(spei_12m).6 5.218817372e-1
#> 21 s(spei_12m).7 -2.992021220e-1
#> 22 s(spei_12m).8 -1.241019338e+0
#> 23 s(spei_12m).9 3.809995050e-1
#> 24 te(gini_index,gdp_per_capita).1 -1.118296253e+0
#> 25 te(gini_index,gdp_per_capita).2 -9.708578486e-1
#> 26 te(gini_index,gdp_per_capita).3 -9.292023996e-1
#> 27 te(gini_index,gdp_per_capita).4 -2.239508979e+0
#> 28 te(gini_index,gdp_per_capita).5 3.549410073e-1
#> 29 te(gini_index,gdp_per_capita).6 2.398415668e-1
#> 30 te(gini_index,gdp_per_capita).7 -5.776487923e-1
#> 31 te(gini_index,gdp_per_capita).8 2.376113483e-1
#> 32 te(gini_index,gdp_per_capita).9 -1.593263850e-1
#> 33 te(gini_index,gdp_per_capita).10 8.158498397e-1
#> 34 te(gini_index,gdp_per_capita).11 3.132175833e-1
#> 35 te(gini_index,gdp_per_capita).12 -6.594576561e-2
#> 36 te(gini_index,gdp_per_capita).13 2.282032443e-1
#> 37 te(gini_index,gdp_per_capita).14 5.618358069e-1
#> 38 te(gini_index,gdp_per_capita).15 9.519793937e-1
#> 39 te(gini_index,gdp_per_capita).16 6.374356573e-1
#> 40 te(gini_index,gdp_per_capita).17 -3.274120004e-1
#> 41 te(gini_index,gdp_per_capita).18 8.347836027e-1
#> 42 te(gini_index,gdp_per_capita).19 1.285028293e+0
#> 43 te(gini_index,gdp_per_capita).20 6.019511562e-1
#> 44 te(gini_index,gdp_per_capita).21 -2.237780356e-1
#> 45 te(gini_index,gdp_per_capita).22 -1.009169884e+0
#> 46 te(gini_index,gdp_per_capita).23 -1.052880265e+0
#> 47 te(gini_index,gdp_per_capita).24 5.398402735e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9275958816 0.4992052948 2.793717330e-1
#> 2 observed 0.9275958816 0.2963357967 8.880375272e-2
#> 3 estimate 0.9275958816 0.3728479981 3.827404525e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(97.026)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.422298362 0.019286524 -177.44506 < 2.22e-16 ***
#> year2009 0.134600361 0.019161878 7.02438 0.0000000000021501 ***
#> year2011 0.282919426 0.021086169 13.41730 < 2.22e-16 ***
#> year2012 0.042325336 0.028205521 1.50060 0.133458
#> year2013 0.099720844 0.021992157 4.53438 0.0000057772354855 ***
#> year2014 0.105627265 0.021526945 4.90675 0.0000009259953279 ***
#> year2015 0.044790860 0.029353340 1.52592 0.127030
#> year2016 0.057083294 0.032150637 1.77549 0.075816 .
#> year2017 0.053051320 0.027487146 1.93004 0.053602 .
#> year2018 0.033627943 0.028276586 1.18925 0.234341
#> year2019 -0.009719769 0.027633353 -0.35174 0.725033
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 6.807326 7.957707 250.3984 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 16.141641 17.558059 901.0652 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0413 Deviance explained = 7.86%
#> -REML = -49898 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.133873228e-2 weak cohen1988
#> 2 SE 2.733570348e-3 <NA> <NA>
#> 3 Lower CI 3.598103285e-2 weak cohen1988
#> 4 Upper CI 4.669643172e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.394896629e+1
#> 2 logLik 4.998753016e+4
#> 3 AIC -9.990040491e+4
#> 4 BIC -9.960802857e+4
#> 5 deviance 1.849082357e+4
#> 6 df.residual 1.859905103e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 4.133873228e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.890018492e-2
#> 2 mean((Intercept)) -3.422298362e+0
#> 3 year2009 1.346003607e-1
#> 4 year2011 2.829194259e-1
#> 5 year2012 4.232533606e-2
#> 6 year2013 9.972084358e-2
#> 7 year2014 1.056272645e-1
#> 8 year2015 4.479085979e-2
#> 9 year2016 5.708329429e-2
#> 10 year2017 5.305131974e-2
#> 11 year2018 3.362794333e-2
#> 12 year2019 -9.719769335e-3
#> 13 mean(s(spei_12m)) 4.226187529e-2
#> 14 mean(te(gini_index,gdp_per_capita)) 2.026276955e-2
#> 15 s(spei_12m).1 -2.678231957e-2
#> 16 s(spei_12m).2 4.586388030e-2
#> 17 s(spei_12m).3 6.606196257e-2
#> 18 s(spei_12m).4 1.782962186e-2
#> 19 s(spei_12m).5 3.964498149e-2
#> 20 s(spei_12m).6 3.324264753e-2
#> 21 s(spei_12m).7 -2.250571544e-3
#> 22 s(spei_12m).8 1.582279150e-1
#> 23 s(spei_12m).9 4.851875995e-2
#> 24 te(gini_index,gdp_per_capita).1 -5.675253699e-1
#> 25 te(gini_index,gdp_per_capita).2 -8.179040811e-1
#> 26 te(gini_index,gdp_per_capita).3 -9.359600071e-1
#> 27 te(gini_index,gdp_per_capita).4 -1.968585909e+0
#> 28 te(gini_index,gdp_per_capita).5 1.066590277e-1
#> 29 te(gini_index,gdp_per_capita).6 -4.939857355e-2
#> 30 te(gini_index,gdp_per_capita).7 -6.154408719e-2
#> 31 te(gini_index,gdp_per_capita).8 -1.748884453e-1
#> 32 te(gini_index,gdp_per_capita).9 -4.045659209e-1
#> 33 te(gini_index,gdp_per_capita).10 2.429839471e-1
#> 34 te(gini_index,gdp_per_capita).11 5.686344429e-2
#> 35 te(gini_index,gdp_per_capita).12 -1.289805559e-2
#> 36 te(gini_index,gdp_per_capita).13 -3.979172135e-2
#> 37 te(gini_index,gdp_per_capita).14 7.221996843e-2
#> 38 te(gini_index,gdp_per_capita).15 4.038085380e-1
#> 39 te(gini_index,gdp_per_capita).16 7.192738724e-2
#> 40 te(gini_index,gdp_per_capita).17 1.289116712e-1
#> 41 te(gini_index,gdp_per_capita).18 -8.029948847e-2
#> 42 te(gini_index,gdp_per_capita).19 5.895102213e-1
#> 43 te(gini_index,gdp_per_capita).20 1.015833386e-1
#> 44 te(gini_index,gdp_per_capita).21 1.047179456e-1
#> 45 te(gini_index,gdp_per_capita).22 1.362951267e-1
#> 46 te(gini_index,gdp_per_capita).23 1.049612386e-1
#> 47 te(gini_index,gdp_per_capita).24 3.479226274e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9613644170 0.8446129978 5.458642390e-1
#> 2 observed 0.9613644170 0.6913057288 1.480120264e-1
#> 3 estimate 0.9613644170 0.7107244449 5.201532273e-3
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(123.39)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.36009851 0.03393578 -99.01344 < 2.22e-16 ***
#> year2009 0.06924372 0.04386381 1.57861 0.1144263
#> year2011 -0.03729113 0.04450071 -0.83799 0.4020366
#> year2012 0.06477849 0.04533624 1.42885 0.1530487
#> year2013 0.11459449 0.04353517 2.63223 0.0084827 **
#> year2014 0.05524797 0.04466135 1.23704 0.2160715
#> year2015 0.06949705 0.05614092 1.23790 0.2157518
#> year2016 0.08910048 0.04895316 1.82012 0.0687412 .
#> year2017 0.03231145 0.04913739 0.65757 0.5108121
#> year2018 -0.04221208 0.04655426 -0.90673 0.3645504
#> year2019 -0.04456896 0.04703997 -0.94747 0.3433994
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.004254 1.008492 0.39930 0.53118
#> te(gini_index,gdp_per_capita) 8.461772 9.572498 93.78618 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0202 Deviance explained = 5.7%
#> -REML = -6989.1 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.020938084e-2 weak cohen1988
#> 2 SE 5.280563103e-3 <NA> <NA>
#> 3 Lower CI 9.859667337e-3 very weak (negligible) cohen1988
#> 4 Upper CI 3.055909434e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 2.046602526e+1
#> 2 logLik 7.030160349e+3
#> 3 AIC -1.401515872e+4
#> 4 BIC -1.388330535e+4
#> 5 deviance 2.485099127e+3
#> 6 df.residual 2.517533975e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 2.020938084e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -7.598966416e-2
#> 2 mean((Intercept)) -3.360098507e+0
#> 3 year2009 6.924371538e-2
#> 4 year2011 -3.729112953e-2
#> 5 year2012 6.477848634e-2
#> 6 year2013 1.145944941e-1
#> 7 year2014 5.524796556e-2
#> 8 year2015 6.949704530e-2
#> 9 year2016 8.910048319e-2
#> 10 year2017 3.231145462e-2
#> 11 year2018 -4.221207557e-2
#> 12 year2019 -4.456895617e-2
#> 13 mean(s(spei_12m)) 9.955548547e-4
#> 14 mean(te(gini_index,gdp_per_capita)) -1.512950803e-2
#> 15 s(spei_12m).1 -6.524900103e-6
#> 16 s(spei_12m).2 2.560035442e-5
#> 17 s(spei_12m).3 -3.957402750e-6
#> 18 s(spei_12m).4 -1.668167311e-5
#> 19 s(spei_12m).5 -7.228718985e-7
#> 20 s(spei_12m).6 1.457474746e-5
#> 21 s(spei_12m).7 3.584404384e-6
#> 22 s(spei_12m).8 9.077142207e-5
#> 23 s(spei_12m).9 8.853349612e-3
#> 24 te(gini_index,gdp_per_capita).1 2.091885453e-1
#> 25 te(gini_index,gdp_per_capita).2 2.058242018e-1
#> 26 te(gini_index,gdp_per_capita).3 1.786318726e-1
#> 27 te(gini_index,gdp_per_capita).4 -1.219962489e+0
#> 28 te(gini_index,gdp_per_capita).5 4.011961612e-2
#> 29 te(gini_index,gdp_per_capita).6 -5.744476140e-2
#> 30 te(gini_index,gdp_per_capita).7 1.018616928e-1
#> 31 te(gini_index,gdp_per_capita).8 -1.120068444e-1
#> 32 te(gini_index,gdp_per_capita).9 -2.637107203e-1
#> 33 te(gini_index,gdp_per_capita).10 1.009786220e-1
#> 34 te(gini_index,gdp_per_capita).11 4.758705246e-2
#> 35 te(gini_index,gdp_per_capita).12 9.502368920e-2
#> 36 te(gini_index,gdp_per_capita).13 -5.599932568e-3
#> 37 te(gini_index,gdp_per_capita).14 9.385774811e-3
#> 38 te(gini_index,gdp_per_capita).15 8.531662249e-2
#> 39 te(gini_index,gdp_per_capita).16 -2.148209174e-2
#> 40 te(gini_index,gdp_per_capita).17 1.001652391e-1
#> 41 te(gini_index,gdp_per_capita).18 -1.065941223e-1
#> 42 te(gini_index,gdp_per_capita).19 3.521515657e-1
#> 43 te(gini_index,gdp_per_capita).20 -6.771631009e-1
#> 44 te(gini_index,gdp_per_capita).21 -6.209372775e-1
#> 45 te(gini_index,gdp_per_capita).22 -5.801770258e-1
#> 46 te(gini_index,gdp_per_capita).23 -5.323652188e-1
#> 47 te(gini_index,gdp_per_capita).24 2.308100898e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9464494757 0.6150541202 4.570217924e-1
#> 2 observed 0.9464494757 0.5722274660 2.264678891e-2
#> 3 estimate 0.9464494757 0.4655127094 9.695469040e-3
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mpepr_gam_3_by_misfs,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_3_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(maper_mpepr_gam_3_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.394)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.89749832 0.03499241 -82.80362 < 2.22e-16 ***
#> year2009 -0.07102863 0.04933216 -1.43980 0.1499229
#> year2011 0.19197321 0.04180470 4.59214 0.00000438716272 ***
#> year2012 0.12808101 0.04536731 2.82320 0.0047547 **
#> year2013 0.27285638 0.04304131 6.33941 0.00000000023065 ***
#> year2014 0.19182264 0.04620027 4.15198 0.00003296099051 ***
#> year2015 0.14416902 0.05043252 2.85865 0.0042545 **
#> year2016 0.23154441 0.05010010 4.62164 0.00000380726421 ***
#> year2017 0.25296076 0.04849268 5.21647 0.00000018236181 ***
#> year2018 0.18496284 0.04578218 4.04006 0.00005343717255 ***
#> year2019 0.01308144 0.05299363 0.24685 0.8050249
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 5.27766 6.525358 46.58655 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.17567 19.917300 342.58982 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00551 Deviance explained = 7.43%
#> -REML = -13646 Scale est. = 1 n = 7271
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.445333010e+1
#> 2 logLik 1.373198597e+4
#> 3 AIC -2.738805917e+4
#> 4 BIC -2.712647712e+4
#> 5 deviance 7.309843328e+3
#> 6 df.residual 7.236546670e+3
#> 7 nobs 7.271000000e+3
#> 8 adj.r.squared -5.506126148e-3
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.979273870e-1
#> 2 mean((Intercept)) -2.897498318e+0
#> 3 year2009 -7.102862903e-2
#> 4 year2011 1.919732076e-1
#> 5 year2012 1.280810076e-1
#> 6 year2013 2.728563793e-1
#> 7 year2014 1.918226365e-1
#> 8 year2015 1.441690154e-1
#> 9 year2016 2.315444085e-1
#> 10 year2017 2.529607623e-1
#> 11 year2018 1.849628398e-1
#> 12 year2019 1.308143669e-2
#> 13 mean(s(spei_12m)) 3.727215358e-2
#> 14 mean(te(gini_index,gdp_per_capita)) -6.869657981e-1
#> 15 s(spei_12m).1 2.270217647e-1
#> 16 s(spei_12m).2 1.880935192e-2
#> 17 s(spei_12m).3 3.789455724e-2
#> 18 s(spei_12m).4 5.846880905e-4
#> 19 s(spei_12m).5 -8.473067319e-3
#> 20 s(spei_12m).6 -1.661662241e-2
#> 21 s(spei_12m).7 1.563541091e-3
#> 22 s(spei_12m).8 -6.474661319e-2
#> 23 s(spei_12m).9 1.394117822e-1
#> 24 te(gini_index,gdp_per_capita).1 -8.162821927e-1
#> 25 te(gini_index,gdp_per_capita).2 -6.070783304e-1
#> 26 te(gini_index,gdp_per_capita).3 -4.724228060e-2
#> 27 te(gini_index,gdp_per_capita).4 -1.830759404e+1
#> 28 te(gini_index,gdp_per_capita).5 4.187865778e-1
#> 29 te(gini_index,gdp_per_capita).6 4.805699870e-1
#> 30 te(gini_index,gdp_per_capita).7 -5.520553404e-1
#> 31 te(gini_index,gdp_per_capita).8 6.066735003e-1
#> 32 te(gini_index,gdp_per_capita).9 1.992701245e+0
#> 33 te(gini_index,gdp_per_capita).10 3.714515191e-1
#> 34 te(gini_index,gdp_per_capita).11 2.099776641e-1
#> 35 te(gini_index,gdp_per_capita).12 -1.547028441e-1
#> 36 te(gini_index,gdp_per_capita).13 2.174941801e-1
#> 37 te(gini_index,gdp_per_capita).14 3.592576169e+0
#> 38 te(gini_index,gdp_per_capita).15 5.339810642e-1
#> 39 te(gini_index,gdp_per_capita).16 5.470099206e-1
#> 40 te(gini_index,gdp_per_capita).17 -9.098265648e-2
#> 41 te(gini_index,gdp_per_capita).18 4.228362467e-1
#> 42 te(gini_index,gdp_per_capita).19 3.150534223e+0
#> 43 te(gini_index,gdp_per_capita).20 2.901982232e-2
#> 44 te(gini_index,gdp_per_capita).21 1.700971926e-1
#> 45 te(gini_index,gdp_per_capita).22 2.069902651e-1
#> 46 te(gini_index,gdp_per_capita).23 2.256874277e-1
#> 47 te(gini_index,gdp_per_capita).24 -9.087628477e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9420895447 0.5836182392 0.3501207456
#> 2 observed 0.9420895447 0.4983619723 0.1122767275
#> 3 estimate 0.9420895447 0.4793905047 0.01046755054
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(21.387)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.40957792 0.01846764 -184.62443 < 2.22e-16 ***
#> year2009 0.17436668 0.02420855 7.20269 5.9036e-13 ***
#> year2011 0.17182884 0.02406123 7.14132 9.2442e-13 ***
#> year2012 0.09241627 0.02604936 3.54774 0.00038856 ***
#> year2013 0.27378851 0.02529057 10.82571 < 2.22e-16 ***
#> year2014 0.21039289 0.02653915 7.92764 2.2334e-15 ***
#> year2015 0.32004273 0.02524818 12.67587 < 2.22e-16 ***
#> year2016 0.38817517 0.02571272 15.09662 < 2.22e-16 ***
#> year2017 0.50413796 0.02576020 19.57042 < 2.22e-16 ***
#> year2018 0.25808555 0.02625923 9.82837 < 2.22e-16 ***
#> year2019 0.19398696 0.02721805 7.12714 1.0247e-12 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.666385 8.969178 319.8837 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.601623 19.724664 3117.1584 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0113 Deviance explained = 12.9%
#> -REML = -65637 Scale est. = 1 n = 29045
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.132586677e-2 very weak (negligible) cohen1988
#> 2 SE 1.181047932e-3 <NA> <NA>
#> 3 Lower CI 9.011055363e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.364067818e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.826800801e+1
#> 2 logLik 6.574516920e+4
#> 3 AIC -1.314089507e+5
#> 4 BIC -1.310721440e+5
#> 5 deviance 3.083586714e+4
#> 6 df.residual 2.900673199e+4
#> 7 nobs 2.9045000 e+4
#> 8 adj.r.squared 1.132586677e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 4.163194885e-2
#> 2 mean((Intercept)) -3.409577916e+0
#> 3 year2009 1.743666767e-1
#> 4 year2011 1.718288369e-1
#> 5 year2012 9.241627171e-2
#> 6 year2013 2.737885076e-1
#> 7 year2014 2.103928910e-1
#> 8 year2015 3.200427327e-1
#> 9 year2016 3.881751656e-1
#> 10 year2017 5.041379580e-1
#> 11 year2018 2.580855498e-1
#> 12 year2019 1.939869607e-1
#> 13 mean(s(spei_12m)) -6.718383870e-3
#> 14 mean(te(gini_index,gdp_per_capita)) 1.131094821e-1
#> 15 s(spei_12m).1 2.439117634e-1
#> 16 s(spei_12m).2 -2.743999575e-1
#> 17 s(spei_12m).3 1.439323122e-1
#> 18 s(spei_12m).4 3.082619913e-1
#> 19 s(spei_12m).5 -1.306936663e-1
#> 20 s(spei_12m).6 4.157866068e-1
#> 21 s(spei_12m).7 -2.540656031e-1
#> 22 s(spei_12m).8 -8.709847471e-1
#> 23 s(spei_12m).9 3.577858455e-1
#> 24 te(gini_index,gdp_per_capita).1 -1.121484631e+0
#> 25 te(gini_index,gdp_per_capita).2 -1.072474685e+0
#> 26 te(gini_index,gdp_per_capita).3 -1.081236428e+0
#> 27 te(gini_index,gdp_per_capita).4 -2.202818211e-2
#> 28 te(gini_index,gdp_per_capita).5 5.506929961e-1
#> 29 te(gini_index,gdp_per_capita).6 1.825342804e-1
#> 30 te(gini_index,gdp_per_capita).7 -4.850461930e-1
#> 31 te(gini_index,gdp_per_capita).8 1.531782923e-1
#> 32 te(gini_index,gdp_per_capita).9 4.571983770e-1
#> 33 te(gini_index,gdp_per_capita).10 8.157361536e-1
#> 34 te(gini_index,gdp_per_capita).11 2.915029087e-1
#> 35 te(gini_index,gdp_per_capita).12 -6.125327421e-2
#> 36 te(gini_index,gdp_per_capita).13 1.514532707e-1
#> 37 te(gini_index,gdp_per_capita).14 6.250683983e-1
#> 38 te(gini_index,gdp_per_capita).15 9.365891160e-1
#> 39 te(gini_index,gdp_per_capita).16 5.434986986e-1
#> 40 te(gini_index,gdp_per_capita).17 -2.575350676e-1
#> 41 te(gini_index,gdp_per_capita).18 6.469127647e-1
#> 42 te(gini_index,gdp_per_capita).19 7.975638290e-1
#> 43 te(gini_index,gdp_per_capita).20 8.414545692e-1
#> 44 te(gini_index,gdp_per_capita).21 1.532137619e-1
#> 45 te(gini_index,gdp_per_capita).22 -9.886800993e-1
#> 46 te(gini_index,gdp_per_capita).23 -1.195133072e+0
#> 47 te(gini_index,gdp_per_capita).24 1.852901784e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9275958816 0.4992052948 2.793717330e-1
#> 2 observed 0.9275958816 0.2702154954 1.114964053e-1
#> 3 estimate 0.9275958816 0.3728479981 3.827404525e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(51.467)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.65456423 0.01907452 -139.16805 < 2.22e-16 ***
#> year2009 0.10270964 0.01887922 5.44035 0.000000053175 ***
#> year2011 0.20228113 0.02086572 9.69442 < 2.22e-16 ***
#> year2012 -0.02356093 0.02825686 -0.83381 0.404386
#> year2013 0.05340707 0.02168716 2.46261 0.013793 *
#> year2014 0.03365939 0.02123896 1.58479 0.113013
#> year2015 -0.05152922 0.02943334 -1.75071 0.079996 .
#> year2016 -0.02765319 0.03229708 -0.85621 0.391880
#> year2017 -0.03173125 0.02745049 -1.15594 0.247704
#> year2018 -0.12181352 0.02842033 -4.28614 0.000018180443 ***
#> year2019 -0.10925374 0.02760552 -3.95768 0.000075682063 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 6.665316 7.839274 164.7348 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 14.972984 16.559095 674.8512 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.046 Deviance explained = 6.67%
#> -REML = -38021 Scale est. = 1 n = 18633
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.602666215e-2 weak cohen1988
#> 2 SE 2.870301211e-3 <NA> <NA>
#> 3 Lower CI 4.040097515e-2 weak cohen1988
#> 4 Upper CI 5.165234914e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.263829964e+1
#> 2 logLik 3.810406849e+4
#> 3 AIC -7.613535430e+4
#> 4 BIC -7.585031224e+4
#> 5 deviance 1.823652258e+4
#> 6 df.residual 1.860036170e+4
#> 7 nobs 1.863300000e+4
#> 8 adj.r.squared 4.602666215e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 2.526920715e-2
#> 2 mean((Intercept)) -2.654564231e+0
#> 3 year2009 1.027096388e-1
#> 4 year2011 2.022811275e-1
#> 5 year2012 -2.356093121e-2
#> 6 year2013 5.340706705e-2
#> 7 year2014 3.365938917e-2
#> 8 year2015 -5.152922169e-2
#> 9 year2016 -2.765319102e-2
#> 10 year2017 -3.173124526e-2
#> 11 year2018 -1.218135165e-1
#> 12 year2019 -1.092537362e-1
#> 13 mean(s(spei_12m)) 6.382623701e-2
#> 14 mean(te(gini_index,gdp_per_capita)) 1.318940764e-1
#> 15 s(spei_12m).1 7.294458813e-3
#> 16 s(spei_12m).2 1.099596638e-1
#> 17 s(spei_12m).3 3.605723483e-2
#> 18 s(spei_12m).4 4.409055291e-2
#> 19 s(spei_12m).5 3.094679901e-2
#> 20 s(spei_12m).6 6.990441373e-2
#> 21 s(spei_12m).7 -3.005476028e-3
#> 22 s(spei_12m).8 2.573174454e-1
#> 23 s(spei_12m).9 2.187104059e-2
#> 24 te(gini_index,gdp_per_capita).1 -3.689060904e-1
#> 25 te(gini_index,gdp_per_capita).2 -5.480426988e-1
#> 26 te(gini_index,gdp_per_capita).3 -6.566423811e-1
#> 27 te(gini_index,gdp_per_capita).4 -4.607706272e+0
#> 28 te(gini_index,gdp_per_capita).5 1.388630445e-1
#> 29 te(gini_index,gdp_per_capita).6 -6.157907773e-2
#> 30 te(gini_index,gdp_per_capita).7 -6.649105234e-2
#> 31 te(gini_index,gdp_per_capita).8 -1.429622269e-1
#> 32 te(gini_index,gdp_per_capita).9 -9.572429641e-1
#> 33 te(gini_index,gdp_per_capita).10 2.262300123e-1
#> 34 te(gini_index,gdp_per_capita).11 2.871312452e-2
#> 35 te(gini_index,gdp_per_capita).12 -2.194057970e-2
#> 36 te(gini_index,gdp_per_capita).13 -3.707900933e-2
#> 37 te(gini_index,gdp_per_capita).14 1.268069420e-1
#> 38 te(gini_index,gdp_per_capita).15 3.479801473e-1
#> 39 te(gini_index,gdp_per_capita).16 7.292481407e-2
#> 40 te(gini_index,gdp_per_capita).17 1.073209282e-1
#> 41 te(gini_index,gdp_per_capita).18 -5.508358550e-2
#> 42 te(gini_index,gdp_per_capita).19 1.279919024e+0
#> 43 te(gini_index,gdp_per_capita).20 2.171336173e-1
#> 44 te(gini_index,gdp_per_capita).21 1.048959752e-1
#> 45 te(gini_index,gdp_per_capita).22 9.266138365e-2
#> 46 te(gini_index,gdp_per_capita).23 5.861462092e-2
#> 47 te(gini_index,gdp_per_capita).24 7.887070136e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9613644170 0.8446129978 5.458642390e-1
#> 2 observed 0.9613644170 0.6788328002 1.389565332e-1
#> 3 estimate 0.9613644170 0.7107244449 5.201532273e-3
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(64.662)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.665555361 0.034439716 -77.39772 < 2.22e-16 ***
#> year2009 0.045561071 0.044697169 1.01933 0.30804733
#> year2011 -0.081965330 0.045430434 -1.80419 0.07120085 .
#> year2012 0.001645178 0.046505238 0.03538 0.97177977
#> year2013 0.054746547 0.044603257 1.22741 0.21966800
#> year2014 -0.014654005 0.045816959 -0.31984 0.74909114
#> year2015 -0.007244639 0.057824918 -0.12529 0.90029732
#> year2016 0.010768697 0.050348437 0.21388 0.83063795
#> year2017 -0.036335547 0.050436295 -0.72042 0.47126361
#> year2018 -0.164320806 0.048171993 -3.41113 0.00064695 ***
#> year2019 -0.157985827 0.048603755 -3.25049 0.00115208 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 1.006843 1.013652 0.23082 0.63935
#> te(gini_index,gdp_per_capita) 7.912374 9.083904 62.88617 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0342 Deviance explained = 5.3%
#> -REML = -5451.1 Scale est. = 1 n = 2538
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.415010714e-2 weak cohen1988
#> 2 SE 6.766687604e-3 <NA> <NA>
#> 3 Lower CI 2.088764314e-2 weak cohen1988
#> 4 Upper CI 4.741257113e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.991921751e+1
#> 2 logLik 5.490106552e+3
#> 3 AIC -1.093601799e+4
#> 4 BIC -1.080698746e+4
#> 5 deviance 2.475439629e+3
#> 6 df.residual 2.518080782e+3
#> 7 nobs 2.5380 e+3
#> 8 adj.r.squared 3.415010714e-2
#> 9 npar 4.4 e+1
#>
#> # A tibble: 47 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -9.850288677e-2
#> 2 mean((Intercept)) -2.665555361e+0
#> 3 year2009 4.556107120e-2
#> 4 year2011 -8.196532995e-2
#> 5 year2012 1.645178386e-3
#> 6 year2013 5.474654672e-2
#> 7 year2014 -1.465400485e-2
#> 8 year2015 -7.244639244e-3
#> 9 year2016 1.076869728e-2
#> 10 year2017 -3.633554720e-2
#> 11 year2018 -1.643208065e-1
#> 12 year2019 -1.579858273e-1
#> 13 mean(s(spei_12m)) 8.006461619e-4
#> 14 mean(te(gini_index,gdp_per_capita)) -5.524970044e-2
#> 15 s(spei_12m).1 -7.799443364e-6
#> 16 s(spei_12m).2 5.762975380e-5
#> 17 s(spei_12m).3 -8.993421509e-6
#> 18 s(spei_12m).4 -3.828849333e-5
#> 19 s(spei_12m).5 -4.769858142e-6
#> 20 s(spei_12m).6 3.533775161e-5
#> 21 s(spei_12m).7 8.225586081e-6
#> 22 s(spei_12m).8 2.225830691e-4
#> 23 s(spei_12m).9 6.941890513e-3
#> 24 te(gini_index,gdp_per_capita).1 2.366252775e-1
#> 25 te(gini_index,gdp_per_capita).2 2.314305834e-1
#> 26 te(gini_index,gdp_per_capita).3 1.979789423e-1
#> 27 te(gini_index,gdp_per_capita).4 -1.577153559e+0
#> 28 te(gini_index,gdp_per_capita).5 4.062400796e-2
#> 29 te(gini_index,gdp_per_capita).6 -7.157518795e-2
#> 30 te(gini_index,gdp_per_capita).7 1.100713165e-1
#> 31 te(gini_index,gdp_per_capita).8 -1.365659479e-1
#> 32 te(gini_index,gdp_per_capita).9 -5.656099311e-1
#> 33 te(gini_index,gdp_per_capita).10 8.660683752e-2
#> 34 te(gini_index,gdp_per_capita).11 3.253262601e-2
#> 35 te(gini_index,gdp_per_capita).12 9.053782869e-2
#> 36 te(gini_index,gdp_per_capita).13 -1.818771818e-2
#> 37 te(gini_index,gdp_per_capita).14 -2.761938918e-1
#> 38 te(gini_index,gdp_per_capita).15 6.252628171e-2
#> 39 te(gini_index,gdp_per_capita).16 -4.832324169e-2
#> 40 te(gini_index,gdp_per_capita).17 9.637217047e-2
#> 41 te(gini_index,gdp_per_capita).18 -1.314412412e-1
#> 42 te(gini_index,gdp_per_capita).19 7.483450313e-2
#> 43 te(gini_index,gdp_per_capita).20 -4.516363396e-1
#> 44 te(gini_index,gdp_per_capita).21 -4.193896940e-1
#> 45 te(gini_index,gdp_per_capita).22 -3.895427681e-1
#> 46 te(gini_index,gdp_per_capita).23 -3.650081874e-1
#> 47 te(gini_index,gdp_per_capita).24 1.864494522e+0
#>
#> # A tibble: 3 × 4
#> names para `s(spei_12m)` `te(gini_index,gdp_per_capita)`
#> <chr> <dbl> <dbl> <dbl>
#> 1 worst 0.9464494757 0.6150541202 4.570217924e-1
#> 2 observed 0.9464494757 0.5726379313 3.690617847e-2
#> 3 estimate 0.9464494757 0.4655127094 9.695469040e-3
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_mpepr_gam_3_by_misfs,
type = 3,
x_label = "Standardised Precipitation Evapotranspiration Index (12 months)",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_3_by_misfs
model. All other variables are held constant at their mean values except SPEI. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By s(year)
(Continuous)
Code
mbepr_gam_4_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(mbepr ~ s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(mbepr_gam_4_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.488)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.764025565 0.008889087 -310.9459 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 7.887682 8.682594 164.6248 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0196 Deviance explained = 2.27%
#> -REML = -14555 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 8.887681869e+0
#> 2 logLik 1.457885247e+4
#> 3 AIC -2.913653050e+4
#> 4 BIC -2.906264320e+4
#> 5 deviance 8.116224104e+3
#> 6 df.residual 7.925112318e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -1.962561973e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.377084428e-1
#> 2 mean((Intercept)) -2.764025565e+0
#> 3 mean(s(year)) 4.299345969e-2
#> 4 s(year).1 -1.429173452e-1
#> 5 s(year).2 -8.170615458e-1
#> 6 s(year).3 2.261602880e-1
#> 7 s(year).4 -6.426766869e-1
#> 8 s(year).5 -2.417863858e-2
#> 9 s(year).6 -2.671706965e-1
#> 10 s(year).7 1.362024407e-1
#> 11 s(year).8 1.230056245e+0
#> 12 s(year).9 6.885270764e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 1.130576203e-24 1.124907020e-24
#> 2 observed 1.130576203e-24 6.025782360e-26
#> 3 estimate 1.130576203e-24 2.338537092e-27
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(16.503)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.067860265 0.004875082 -629.2941 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 7.979043 8.72876 232.1217 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00452 Deviance explained = 0.756%
#> -REML = -68054 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 8.979042735e+0
#> 2 logLik 6.807959833e+4
#> 3 AIC -1.361377391e+5
#> 4 BIC -1.360479915e+5
#> 5 deviance 3.347287221e+4
#> 6 df.residual 3.172502096e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -4.518969525e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.931434504e-1
#> 2 mean((Intercept)) -3.067860265e+0
#> 3 mean(s(year)) 1.515841785e-2
#> 4 s(year).1 -1.981827360e-2
#> 5 s(year).2 -6.136279302e-1
#> 6 s(year).3 7.152003750e-2
#> 7 s(year).4 -4.575179023e-1
#> 8 s(year).5 -1.950031080e-2
#> 9 s(year).6 -2.247249699e-1
#> 10 s(year).7 9.707933077e-2
#> 11 s(year).8 9.667873650e-1
#> 12 s(year).9 3.362284142e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 7.881445955e-24 7.879958186e-24
#> 2 observed 7.881445955e-24 2.819318734e-25
#> 3 estimate 7.881445955e-24 2.276708824e-26
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(38.438)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.601271212 0.004079439 -637.6542 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.128049 8.798209 356.0552 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0274 Deviance explained = 1.75%
#> -REML = -38672 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.742645089e-2 weak cohen1988
#> 2 SE 2.259216614e-3 <NA> <NA>
#> 3 Lower CI 2.299846769e-2 weak cohen1988
#> 4 Upper CI 3.185443408e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 9.128049307e+0
#> 2 logLik 3.869852716e+4
#> 3 AIC -7.737554990e+4
#> 4 BIC -7.729039715e+4
#> 5 deviance 1.976867118e+4
#> 6 df.residual 2.031487195e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 2.742645089e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.389874165e-1
#> 2 mean((Intercept)) -2.601271212e+0
#> 3 mean(s(year)) 2.348856087e-2
#> 4 s(year).1 -8.112542014e-2
#> 5 s(year).2 -2.956065185e-2
#> 6 s(year).3 1.189912093e-1
#> 7 s(year).4 -1.094589559e-2
#> 8 s(year).5 4.413149703e-2
#> 9 s(year).6 1.735325953e-1
#> 10 s(year).7 -3.111892638e-2
#> 11 s(year).8 -1.173411099e-1
#> 12 s(year).9 1.448337501e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 4.805062457e-24 4.789869656e-24
#> 2 observed 4.805062457e-24 4.263678007e-26
#> 3 estimate 4.805062457e-24 4.765891442e-27
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(34.962)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.26870964 0.01027894 -220.7143 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 6.830195 7.938482 131.2971 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0447 Deviance explained = 4.75%
#> -REML = -4662.6 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.468165164e-2 weak cohen1988
#> 2 SE 7.663975966e-3 <NA> <NA>
#> 3 Lower CI 2.966053477e-2 weak cohen1988
#> 4 Upper CI 5.970276851e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 7.830194824e+0
#> 2 logLik 4.681903728e+3
#> 3 AIC -9.343930493e+3
#> 4 BIC -9.285029059e+3
#> 5 deviance 2.679398229e+3
#> 6 df.residual 2.762169805e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 4.468165164e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.287300141e-1
#> 2 mean((Intercept)) -2.268709644e+0
#> 3 mean(s(year)) -2.065610868e-3
#> 4 s(year).1 -3.533757149e-2
#> 5 s(year).2 -5.783416765e-2
#> 6 s(year).3 1.151710495e-1
#> 7 s(year).4 -2.098466775e-1
#> 8 s(year).5 -1.578159269e-2
#> 9 s(year).6 8.933809737e-2
#> 10 s(year).7 -1.505386576e-2
#> 11 s(year).8 4.838944005e-2
#> 12 s(year).9 6.236479031e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 3.492632002e-25 3.488396698e-25
#> 2 observed 3.492632002e-25 5.309479396e-28
#> 3 estimate 3.492632002e-25 5.386978387e-28
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_gam_4_by_misfs,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_4_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
beipr_gam_4_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(beipr ~ s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(beipr_gam_4_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.114)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.652246484 0.007815092 -339.375 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 6.840362 7.947109 208.1875 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.028 Deviance explained = 2.66%
#> -REML = -14294 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 7.840362260e+0
#> 2 logLik 1.431385290e+4
#> 3 AIC -2.860796999e+4
#> 4 BIC -2.853910272e+4
#> 5 deviance 8.071653579e+3
#> 6 df.residual 7.926159638e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -2.802353414e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.698576417e-1
#> 2 mean((Intercept)) -2.652246484e+0
#> 3 mean(s(year)) -5.147770349e-3
#> 4 s(year).1 1.297706945e-1
#> 5 s(year).2 -2.409968568e-1
#> 6 s(year).3 7.478848080e-2
#> 7 s(year).4 -2.659585939e-1
#> 8 s(year).5 -1.207630214e-1
#> 9 s(year).6 -1.062463248e-1
#> 10 s(year).7 6.545738557e-2
#> 11 s(year).8 3.859308196e-1
#> 12 s(year).9 3.168748328e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 1.130576203e-24 1.124907020e-24
#> 2 observed 1.130576203e-24 1.285690427e-27
#> 3 estimate 1.130576203e-24 2.338537092e-27
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.649)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.847564146 0.004210194 -676.3499 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.108529 8.789822 259.2185 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0153 Deviance explained = 0.869%
#> -REML = -61296 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 9.108528612e+0
#> 2 logLik 6.132240410e+4
#> 3 AIC -1.226233722e+5
#> 4 BIC -1.225337147e+5
#> 5 deviance 3.310345549e+4
#> 6 df.residual 3.172489147e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -1.533028485e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.832120355e-1
#> 2 mean((Intercept)) -2.847564146e+0
#> 3 mean(s(year)) 1.715976815e-3
#> 4 s(year).1 4.421229608e-2
#> 5 s(year).2 -5.781380272e-1
#> 6 s(year).3 9.108379160e-2
#> 7 s(year).4 -3.997813939e-1
#> 8 s(year).5 -6.499837339e-2
#> 9 s(year).6 -1.984346113e-1
#> 10 s(year).7 1.211944141e-1
#> 11 s(year).8 7.962521498e-1
#> 12 s(year).9 2.040535455e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 7.881445955e-24 7.879958186e-24
#> 2 observed 7.881445955e-24 1.905821459e-25
#> 3 estimate 7.881445955e-24 2.276708824e-26
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(72.181)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.502699587 0.002991543 -836.5916 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 7.538153 8.473267 465.9022 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0356 Deviance explained = 2.24%
#> -REML = -42829 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.563220368e-2 weak cohen1988
#> 2 SE 2.553375305e-3 <NA> <NA>
#> 3 Lower CI 3.062768004e-2 weak cohen1988
#> 4 Upper CI 4.063672731e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 8.538153256e+0
#> 2 logLik 4.285311826e+4
#> 3 AIC -8.568632581e+4
#> 4 BIC -8.560748386e+4
#> 5 deviance 2.003209684e+4
#> 6 df.residual 2.031546185e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 3.563220368e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.791948984e-1
#> 2 mean((Intercept)) -2.502699587e+0
#> 3 mean(s(year)) -3.213882189e-2
#> 4 s(year).1 4.023903617e-2
#> 5 s(year).2 -2.387461072e-1
#> 6 s(year).3 1.881613126e-2
#> 7 s(year).4 -2.078315937e-1
#> 8 s(year).5 -6.174259536e-2
#> 9 s(year).6 -9.300175154e-2
#> 10 s(year).7 3.359126308e-2
#> 11 s(year).8 2.577655460e-1
#> 12 s(year).9 -3.833932568e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 4.805062457e-24 4.789869656e-24
#> 2 observed 4.805062457e-24 6.773069385e-26
#> 3 estimate 4.805062457e-24 4.765891442e-27
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(52.175)
#> Link function: logit
#>
#> Formula:
#> beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.926318771 0.007635733 -252.2769 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 4.985377 6.078625 72.70812 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0342 Deviance explained = 2.7%
#> -REML = -4700.7 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.424800961e-2 weak cohen1988
#> 2 SE 6.783044810e-3 <NA> <NA>
#> 3 Lower CI 2.095348608e-2 weak cohen1988
#> 4 Upper CI 4.754253314e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 5.985376796e+0
#> 2 logLik 4.715764580e+3
#> 3 AIC -9.415371910e+3
#> 4 BIC -9.367493110e+3
#> 5 deviance 2.719239612e+3
#> 6 df.residual 2.764014623e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 3.424800961e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.053964306e-1
#> 2 mean((Intercept)) -1.926318771e+0
#> 3 mean(s(year)) -1.418283728e-2
#> 4 s(year).1 -7.347249263e-2
#> 5 s(year).2 -1.500681413e-1
#> 6 s(year).3 2.235954107e-2
#> 7 s(year).4 -1.233671156e-1
#> 8 s(year).5 -1.640825213e-2
#> 9 s(year).6 -4.790441739e-2
#> 10 s(year).7 1.805726936e-2
#> 11 s(year).8 1.762250535e-1
#> 12 s(year).9 6.693301954e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 3.492632002e-25 3.488396698e-25
#> 2 observed 3.492632002e-25 1.004698483e-27
#> 3 estimate 3.492632002e-25 5.386978387e-28
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = beipr_gam_4_by_misfs,
type = 4,
x_label = "Years",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_4_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mbepr_beipr_gam_4_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(mbepr_beipr ~ s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(mbepr_beipr_gam_4_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(17.183)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.92643518 0.00732242 -263.0872 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 7.487202 8.440969 87.60946 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00999 Deviance explained = 1.24%
#> -REML = -9877.9 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 8.487202293e+0
#> 2 logLik 9.900141715e+3
#> 3 AIC -1.978032556e+4
#> 4 BIC -1.971068344e+4
#> 5 deviance 7.755904132e+3
#> 6 df.residual 7.925512798e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -9.992387590e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.746701213e-1
#> 2 mean((Intercept)) -1.926435182e+0
#> 3 mean(s(year)) 1.997044101e-2
#> 4 s(year).1 -3.557569804e-2
#> 5 s(year).2 -3.988542401e-1
#> 6 s(year).3 1.469349694e-1
#> 7 s(year).4 -4.220789080e-1
#> 8 s(year).5 -3.895361295e-2
#> 9 s(year).6 -1.486024733e-1
#> 10 s(year).7 6.079609169e-2
#> 11 s(year).8 6.653876476e-1
#> 12 s(year).9 3.506801926e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 1.130576203e-24 1.124907020e-24
#> 2 observed 1.130576203e-24 3.702229301e-26
#> 3 estimate 1.130576203e-24 2.338537092e-27
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(16.446)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.201625036 0.004007156 -549.4234 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.090503 8.781786 158.3798 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00203 Deviance explained = 0.545%
#> -REML = -44239 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 9.090502994e+0
#> 2 logLik 4.426560120e+4
#> 3 AIC -8.851017443e+4
#> 4 BIC -8.842222342e+4
#> 5 deviance 3.182801932e+4
#> 6 df.residual 3.172490950e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -2.025155691e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.132274763e-1
#> 2 mean((Intercept)) -2.201625036e+0
#> 3 mean(s(year)) 7.705585839e-3
#> 4 s(year).1 -2.223616984e-3
#> 5 s(year).2 -4.922639301e-1
#> 6 s(year).3 9.559160084e-2
#> 7 s(year).4 -3.963804965e-1
#> 8 s(year).5 -4.215910478e-2
#> 9 s(year).6 -1.786321565e-1
#> 10 s(year).7 8.554582454e-2
#> 11 s(year).8 7.549018881e-1
#> 12 s(year).9 2.449702639e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 7.881445955e-24 7.879958186e-24
#> 2 observed 7.881445955e-24 4.519211869e-25
#> 3 estimate 7.881445955e-24 2.276708824e-26
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(32.282)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.77538891 0.00334683 -530.4687 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 7.448459 8.413178 720.6691 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0428 Deviance explained = 3.42%
#> -REML = -28936 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.276223341e-2 weak cohen1988
#> 2 SE 2.776518861e-3 <NA> <NA>
#> 3 Lower CI 3.732035644e-2 weak cohen1988
#> 4 Upper CI 4.820411038e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 8.448458557e+0
#> 2 logLik 2.895922531e+4
#> 3 AIC -5.789834457e+4
#> 4 BIC -5.781872905e+4
#> 5 deviance 1.982184104e+4
#> 6 df.residual 2.031555154e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 4.276223341e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.905945030e-1
#> 2 mean((Intercept)) -1.775388911e+0
#> 3 mean(s(year)) -1.450623554e-2
#> 4 s(year).1 -2.427295493e-2
#> 5 s(year).2 -1.608454772e-1
#> 6 s(year).3 5.406956031e-2
#> 7 s(year).4 -1.161865611e-1
#> 8 s(year).5 -1.510251505e-2
#> 9 s(year).6 5.817204444e-3
#> 10 s(year).7 -2.461015523e-3
#> 11 s(year).8 9.608371394e-2
#> 12 s(year).9 3.234192524e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 4.805062457e-24 4.789869656e-24
#> 2 observed 4.805062457e-24 8.719666929e-28
#> 3 estimate 4.805062457e-24 4.765891442e-27
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(24.301)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.259433674 0.008937905 -140.9093 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 5.628751 6.781089 149.8307 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0565 Deviance explained = 5.35%
#> -REML = -3049.2 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 5.650386597e-2 weak cohen1988
#> 2 SE 8.511784358e-3 <NA> <NA>
#> 3 Lower CI 3.982107519e-2 weak cohen1988
#> 4 Upper CI 7.318665676e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 6.628751260e+0
#> 2 logLik 3.065513233e+3
#> 3 AIC -6.113464288e+3
#> 4 BIC -6.061422264e+3
#> 5 deviance 2.689338651e+3
#> 6 df.residual 2.763371249e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 5.650386597e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.399896646e-1
#> 2 mean((Intercept)) -1.259433674e+0
#> 3 mean(s(year)) -1.560699685e-2
#> 4 s(year).1 -6.138642692e-2
#> 5 s(year).2 -9.406219996e-2
#> 6 s(year).3 4.854276711e-2
#> 7 s(year).4 -1.498717142e-1
#> 8 s(year).5 -1.064363831e-2
#> 9 s(year).6 -6.545168634e-3
#> 10 s(year).7 4.659019746e-3
#> 11 s(year).8 9.698507247e-2
#> 12 s(year).9 3.185931704e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 3.492632002e-25 3.488396698e-25
#> 2 observed 3.492632002e-25 2.849683062e-28
#> 3 estimate 3.492632002e-25 5.386978387e-28
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_beipr_gam_4_by_misfs,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_4_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_gam_4_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(maper ~ s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(maper_gam_4_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.728)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.528361904 0.009798933 -360.0761 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 6.71971 7.844291 67.31148 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0075 Deviance explained = 0.876%
#> -REML = -20724 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 7.719710001e+0
#> 2 logLik 2.074295858e+4
#> 3 AIC -4.146622857e+4
#> 4 BIC -4.139752613e+4
#> 5 deviance 8.431395374e+3
#> 6 df.residual 7.926280290e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -7.504047063e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.396719578e-1
#> 2 mean((Intercept)) -3.528361904e+0
#> 3 mean(s(year)) 1.462692509e-2
#> 4 s(year).1 9.314060902e-2
#> 5 s(year).2 -4.140425828e-1
#> 6 s(year).3 2.619540929e-2
#> 7 s(year).4 -2.011633800e-1
#> 8 s(year).5 -2.726669141e-2
#> 9 s(year).6 -1.722021440e-2
#> 10 s(year).7 3.863339506e-2
#> 11 s(year).8 5.493621311e-1
#> 12 s(year).9 8.400364983e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 1.130576203e-24 1.124907020e-24
#> 2 observed 1.130576203e-24 8.823014874e-27
#> 3 estimate 1.130576203e-24 2.338537092e-27
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(22.999)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.947469608 0.005229374 -754.8647 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.024324 8.750592 174.1822 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00274 Deviance explained = 0.525%
#> -REML = -1.0447e+05 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 9.024323628e+0
#> 2 logLik 1.044963446e+5
#> 3 AIC -2.089711881e+5
#> 4 BIC -2.088812579e+5
#> 5 deviance 3.427273799e+4
#> 6 df.residual 3.172497568e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -2.739061946e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.745725713e-1
#> 2 mean((Intercept)) -3.947469608e+0
#> 3 mean(s(year)) 2.241598836e-2
#> 4 s(year).1 1.018381627e-1
#> 5 s(year).2 -4.076355111e-1
#> 6 s(year).3 1.945968310e-2
#> 7 s(year).4 -2.240524689e-1
#> 8 s(year).5 5.313890647e-2
#> 9 s(year).6 -1.154145111e-2
#> 10 s(year).7 2.138708047e-2
#> 11 s(year).8 5.041440280e-1
#> 12 s(year).9 1.450054656e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 7.881445955e-24 7.879958186e-24
#> 2 observed 7.881445955e-24 2.558459987e-26
#> 3 estimate 7.881445955e-24 2.276708824e-26
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(51.579)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.400230669 0.004764297 -713.6899 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.434371 8.911811 207.0213 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0114 Deviance explained = 1.09%
#> -REML = -50956 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.137519129e-2 very weak (negligible) cohen1988
#> 2 SE 1.478977177e-3 <NA> <NA>
#> 3 Lower CI 8.476449290e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.427393329e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 9.434370799e+0
#> 2 logLik 5.098456076e+4
#> 3 AIC -1.019472979e+5
#> 4 BIC -1.018608812e+5
#> 5 deviance 2.004291470e+4
#> 6 df.residual 2.031456563e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 1.137519129e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.704610202e-1
#> 2 mean((Intercept)) -3.400230669e+0
#> 3 mean(s(year)) 7.729116299e-2
#> 4 s(year).1 -9.524354801e-2
#> 5 s(year).2 2.499860212e-1
#> 6 s(year).3 1.528793254e-1
#> 7 s(year).4 1.989227716e-1
#> 8 s(year).5 1.275006717e-1
#> 9 s(year).6 3.872334722e-1
#> 10 s(year).7 -4.127270417e-2
#> 11 s(year).8 -4.354376440e-1
#> 12 s(year).9 1.510521010e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 4.805062457e-24 4.789869656e-24
#> 2 observed 4.805062457e-24 2.390662081e-25
#> 3 estimate 4.805062457e-24 4.765891442e-27
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(84.051)
#> Link function: logit
#>
#> Formula:
#> maper ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.51494952 0.01117707 -314.4786 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 3.812015 4.7125 46.05516 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0231 Deviance explained = 1.89%
#> -REML = -7553.9 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.307311496e-2 weak cohen1988
#> 2 SE 5.631921366e-3 <NA> <NA>
#> 3 Lower CI 1.203475192e-2 very weak (negligible) cohen1988
#> 4 Upper CI 3.411147800e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 4.812015363e+0
#> 2 logLik 7.565617215e+3
#> 3 AIC -1.511780943e+4
#> 4 BIC -1.507802711e+4
#> 5 deviance 2.709463766e+3
#> 6 df.residual 2.765187985e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 2.307311496e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.506199485e-1
#> 2 mean((Intercept)) -3.514949521e+0
#> 3 mean(s(year)) 9.722262979e-4
#> 4 s(year).1 1.377998421e-1
#> 5 s(year).2 -4.801240715e-2
#> 6 s(year).3 5.865185124e-3
#> 7 s(year).4 -4.799027195e-2
#> 8 s(year).5 -2.146899652e-4
#> 9 s(year).6 -3.004030017e-2
#> 10 s(year).7 1.312506153e-2
#> 11 s(year).8 1.341547694e-1
#> 12 s(year).9 -1.559371523e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 3.492632002e-25 3.488396698e-25
#> 2 observed 3.492632002e-25 1.234511627e-27
#> 3 estimate 3.492632002e-25 5.386978387e-28
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_gam_4_by_misfs,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MAPER"
)
maper_gam_4_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mpepr_gam_4_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(mpepr ~ s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(mpepr_gam_4_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(31.016)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.415780792 0.008982098 -380.2876 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 5.876832 7.041259 144.7022 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.0331 Deviance explained = 1.82%
#> -REML = -19446 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 6.876831913e+0
#> 2 logLik 1.946273819e+4
#> 3 AIC -3.890744891e+4
#> 4 BIC -3.884454287e+4
#> 5 deviance 8.410916411e+3
#> 6 df.residual 7.927123168e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -3.306336093e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.654426529e-1
#> 2 mean((Intercept)) -3.415780792e+0
#> 3 mean(s(year)) -2.651619306e-2
#> 4 s(year).1 2.174346401e-1
#> 5 s(year).2 -5.682768768e-1
#> 6 s(year).3 -9.547644109e-2
#> 7 s(year).4 -2.393959820e-1
#> 8 s(year).5 -9.423718940e-2
#> 9 s(year).6 -1.951732388e-1
#> 10 s(year).7 1.049420404e-1
#> 11 s(year).8 7.468545630e-1
#> 12 s(year).9 -1.153172529e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 1.130576203e-24 1.124907020e-24
#> 2 observed 1.130576203e-24 2.682534144e-28
#> 3 estimate 1.130576203e-24 2.338537092e-27
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.89)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.737458578 0.004989861 -749.0105 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.129835 8.799041 388.3712 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00817 Deviance explained = 1.12%
#> -REML = -90893 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 9.129834919e+0
#> 2 logLik 9.091881222e+4
#> 3 AIC -1.818160264e+5
#> 4 BIC -1.817256908e+5
#> 5 deviance 3.487152626e+4
#> 6 df.residual 3.172487017e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -8.168167937e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.880494502e-1
#> 2 mean((Intercept)) -3.737458578e+0
#> 3 mean(s(year)) -1.589288047e-2
#> 4 s(year).1 1.086600525e-1
#> 5 s(year).2 -7.390758846e-1
#> 6 s(year).3 -6.532808219e-2
#> 7 s(year).4 -2.550157494e-1
#> 8 s(year).5 1.051294033e-2
#> 9 s(year).6 -1.084220724e-1
#> 10 s(year).7 3.372868372e-2
#> 11 s(year).8 7.242677987e-1
#> 12 s(year).9 1.476363892e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 7.881445955e-24 7.879958186e-24
#> 2 observed 7.881445955e-24 3.157624421e-26
#> 3 estimate 7.881445955e-24 2.276708824e-26
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(87.956)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.328906026 0.003775039 -881.8204 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 5.87848 7.04167 125.3592 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.00837 Deviance explained = 0.658%
#> -REML = -53490 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 8.368181294e-3 very weak (negligible) cohen1988
#> 2 SE 1.272379336e-3 <NA> <NA>
#> 3 Lower CI 5.874363621e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.086199897e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 6.878479732e+0
#> 2 logLik 5.350847177e+4
#> 3 AIC -1.069996254e+5
#> 4 BIC -1.069310493e+5
#> 5 deviance 2.018204211e+4
#> 6 df.residual 2.031712152e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 8.368181294e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.385856281e-1
#> 2 mean((Intercept)) -3.328906026e+0
#> 3 mean(s(year)) -6.327806138e-3
#> 4 s(year).1 -6.226542785e-3
#> 5 s(year).2 -1.622182835e-1
#> 6 s(year).3 -3.886640718e-2
#> 7 s(year).4 -2.850061078e-2
#> 8 s(year).5 -1.574562504e-2
#> 9 s(year).6 -6.517489180e-2
#> 10 s(year).7 3.211770561e-2
#> 11 s(year).8 2.458871229e-1
#> 12 s(year).9 -1.822272269e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 4.805062457e-24 4.789869656e-24
#> 2 observed 4.805062457e-24 2.454022490e-26
#> 3 estimate 4.805062457e-24 4.765891442e-27
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(117.221)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.316663217 0.008995402 -368.7065 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 2.804893 3.488528 18.45051 0.00068947 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.00962 Deviance explained = 0.78%
#> -REML = -7579.6 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 9.620417112e-3 very weak (negligible) cohen1988
#> 2 SE 3.686718987e-3 <NA> <NA>
#> 3 Lower CI 2.394580677e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.684625355e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 3.804893450e+0
#> 2 logLik 7.589756430e+3
#> 3 AIC -1.516853580e+4
#> 4 BIC -1.513600748e+4
#> 5 deviance 2.724408547e+3
#> 6 df.residual 2.766195107e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 9.620417112e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.298481889e-1
#> 2 mean((Intercept)) -3.316663217e+0
#> 3 mean(s(year)) 2.020147517e-3
#> 4 s(year).1 3.567638263e-2
#> 5 s(year).2 -1.469841437e-2
#> 6 s(year).3 -3.295233180e-3
#> 7 s(year).4 -2.435865632e-2
#> 8 s(year).5 -2.914455896e-3
#> 9 s(year).6 -1.953474457e-2
#> 10 s(year).7 7.677889581e-3
#> 11 s(year).8 8.943374876e-2
#> 12 s(year).9 -4.980518897e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 3.492632002e-25 3.488396698e-25
#> 2 observed 3.492632002e-25 5.094730619e-28
#> 3 estimate 3.492632002e-25 5.386978387e-28
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mpepr_gam_4_by_misfs,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_4_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_mpepr_gam_4_by_misfs <-
dplyr::mutate(data, year = as.integer(as.character(year))) |>
gam_misfs(maper_mpepr ~ s(year))
dplyr::mutate(data, year = as.integer(as.character(year))) |>
summarise_gam_misfs(maper_mpepr_gam_4_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.501)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.738267001 0.008190896 -334.3062 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 5.355141 6.489999 77.43736 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00878 Deviance explained = 1.06%
#> -REML = -14650 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 6.355141079e+0
#> 2 logLik 1.466593064e+4
#> 3 AIC -2.931488128e+4
#> 4 BIC -2.925563031e+4
#> 5 deviance 8.013236128e+3
#> 6 df.residual 7.927644859e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -8.779179357e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.785507367e-1
#> 2 mean((Intercept)) -2.738267001e+0
#> 3 mean(s(year)) -5.248929641e-3
#> 4 s(year).1 1.376384812e-1
#> 5 s(year).2 -2.991294984e-1
#> 6 s(year).3 -6.081744698e-2
#> 7 s(year).4 -1.284112825e-1
#> 8 s(year).5 -4.271084747e-2
#> 9 s(year).6 -8.827298471e-2
#> 10 s(year).7 5.343457893e-2
#> 11 s(year).8 4.733736401e-1
#> 12 s(year).9 -9.234500691e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 1.130576203e-24 1.124907020e-24
#> 2 observed 1.130576203e-24 8.648638222e-29
#> 3 estimate 1.130576203e-24 2.338537092e-27
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.304)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.123772043 0.004812238 -649.1308 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 8.468487 8.921806 306.6465 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = -0.00354 Deviance explained = 0.906%
#> -REML = -69448 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 9.468486987e+0
#> 2 logLik 6.947625515e+4
#> 3 AIC -1.389306667e+5
#> 4 BIC -1.388393042e+5
#> 5 deviance 3.380077243e+4
#> 6 df.residual 3.172453151e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -3.543446137e-3
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.102520032e-1
#> 2 mean((Intercept)) -3.123772043e+0
#> 3 mean(s(year)) 2.361334521e-3
#> 4 s(year).1 8.999927753e-2
#> 5 s(year).2 -7.066952812e-1
#> 6 s(year).3 -3.585840580e-2
#> 7 s(year).4 -2.861927701e-1
#> 8 s(year).5 6.586674224e-2
#> 9 s(year).6 -6.086044159e-2
#> 10 s(year).7 3.152779877e-3
#> 11 s(year).8 7.257320898e-1
#> 12 s(year).9 2.261080200e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 7.881445955e-24 7.879958186e-24
#> 2 observed 7.881445955e-24 1.228913459e-26
#> 3 estimate 7.881445955e-24 2.276708824e-26
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(47.018)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.63405992 0.00379428 -694.2186 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 6.82548 7.933766 282.1114 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0205 Deviance explained = 1.46%
#> -REML = -40579 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.054835475e-2 weak cohen1988
#> 2 SE 1.969346524e-3 <NA> <NA>
#> 3 Lower CI 1.668850649e-2 very weak (negligible) cohen1988
#> 4 Upper CI 2.440820301e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 7.825479515e+0
#> 2 logLik 4.060058114e+4
#> 3 AIC -8.118129475e+4
#> 4 BIC -8.110262372e+4
#> 5 deviance 1.989189348e+4
#> 6 df.residual 2.031617452e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 2.054835475e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.486774600e-1
#> 2 mean((Intercept)) -2.634059921e+0
#> 3 mean(s(year)) 1.636503566e-2
#> 4 s(year).1 -4.267022781e-2
#> 5 s(year).2 -1.869584544e-2
#> 6 s(year).3 1.262334793e-2
#> 7 s(year).4 5.912111967e-2
#> 8 s(year).5 4.606888207e-2
#> 9 s(year).6 5.163118523e-2
#> 10 s(year).7 -8.711797799e-5
#> 11 s(year).8 1.346337316e-2
#> 12 s(year).9 2.583060413e-2
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 4.805062457e-24 4.789869656e-24
#> 2 observed 4.805062457e-24 1.803596251e-26
#> 3 estimate 4.805062457e-24 4.765891442e-27
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(60.892)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.684274755 0.009366149 -286.5932 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(year) 3.118664 3.873412 48.69109 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0245 Deviance explained = 1.94%
#> -REML = -5884.9 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.445679373e-2 weak cohen1988
#> 2 SE 5.790121474e-3 <NA> <NA>
#> 3 Lower CI 1.310836418e-2 very weak (negligible) cohen1988
#> 4 Upper CI 3.580522329e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 4.118664335e+0
#> 2 logLik 5.895557018e+3
#> 3 AIC -1.177936721e+4
#> 4 BIC -1.174455783e+4
#> 5 deviance 2.711925400e+3
#> 6 df.residual 2.765881336e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 2.445679373e-2
#> 9 npar 1 e+1
#>
#> # A tibble: 12 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.695130778e-1
#> 2 mean((Intercept)) -2.684274755e+0
#> 3 mean(s(year)) -1.206224742e-3
#> 4 s(year).1 6.253181814e-2
#> 5 s(year).2 -2.372061657e-2
#> 6 s(year).3 -3.644653191e-3
#> 7 s(year).4 -2.967166715e-2
#> 8 s(year).5 -1.785778536e-3
#> 9 s(year).6 -2.283691052e-2
#> 10 s(year).7 9.199869921e-3
#> 11 s(year).8 1.006799660e-1
#> 12 s(year).9 -1.016080508e-1
#>
#> # A tibble: 3 × 3
#> names para `s(year)`
#> <chr> <dbl> <dbl>
#> 1 worst 3.492632002e-25 3.488396698e-25
#> 2 observed 3.492632002e-25 5.994564297e-28
#> 3 estimate 3.492632002e-25 5.386978387e-28
Code
dplyr::mutate(data, year = as.integer(as.character(year))) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_mpepr_gam_4_by_misfs,
type = 4,
x_label = "Years",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_4_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By year
(Ordered)
In this model, the year
variable is treated as a ordered categorical variable.
.L
, .Q
, and .C
are, respectively, the coefficients for the ordered factor coded with linear, quadratic, and cubic contrasts.
Code
mbepr_gam_5_by_misfs <-
data |>
gam_misfs(mbepr ~ year)
data |>
summarise_gam_misfs(mbepr_gam_5_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.537)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.76707348 0.00889582 -311.05322 < 2.22e-16 ***
#> year.L 0.28304655 0.03121408 9.06791 < 2.22e-16 ***
#> year.Q -0.11246535 0.03138404 -3.58352 0.00033899 ***
#> year.C 0.04686843 0.03131901 1.49648 0.13452735
#> year^4 -0.13966641 0.03090395 -4.51937 0.00000620235717360 ***
#> year^5 0.22113383 0.03081657 7.17581 0.00000000000071881 ***
#> year^6 -0.10484629 0.03047211 -3.44073 0.00058015 ***
#> year^7 -0.05267022 0.03059111 -1.72175 0.08511499 .
#> year^8 0.05572956 0.03054007 1.82480 0.06803102 .
#> year^9 -0.05530103 0.03045136 -1.81604 0.06936350 .
#> year^10 -0.11170879 0.03077141 -3.63028 0.00028312 ***
#> year^11 -0.05494166 0.03049266 -1.80180 0.07157702 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0203 Deviance explained = 2.47%
#> -REML = -14555 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.458696428e+4
#> 3 AIC -2.914792856e+4
#> 4 BIC -2.905720269e+4
#> 5 deviance 8.119205011e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -2.027317837e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.326579044e-1
#> 2 mean((Intercept)) -2.767073476e+0
#> 3 year.L 2.830465530e-1
#> 4 year.Q -1.124653465e-1
#> 5 year.C 4.686842801e-2
#> 6 year^4 -1.396664095e-1
#> 7 year^5 2.211338304e-1
#> 8 year^6 -1.048462941e-1
#> 9 year^7 -5.267021586e-2
#> 10 year^8 5.572955459e-2
#> 11 year^9 -5.530103039e-2
#> 12 year^10 -1.117087910e-1
#> 13 year^11 -5.494165552e-2
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(16.507)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.068257280 0.004876622 -629.17683 < 2.22e-16 ***
#> year.L 0.117916909 0.016977423 6.94551 0.0000000000037709 ***
#> year.Q -0.174826699 0.017095705 -10.22635 < 2.22e-16 ***
#> year.C -0.003230379 0.016997114 -0.19005 0.8492664
#> year^4 -0.092998354 0.016928528 -5.49359 0.0000000393849543 ***
#> year^5 0.113903431 0.016871638 6.75118 0.0000000000146649 ***
#> year^6 -0.053888234 0.016821582 -3.20352 0.0013576 **
#> year^7 -0.005140243 0.016788872 -0.30617 0.7594755
#> year^8 0.051135768 0.016775518 3.04824 0.0023019 **
#> year^9 -0.024217553 0.016789792 -1.44240 0.1491903
#> year^10 -0.030014231 0.016842341 -1.78207 0.0747378 .
#> year^11 -0.007893006 0.016932609 -0.46614 0.6411136
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00456 Deviance explained = 0.764%
#> -REML = -68042 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 6.808076769e+4
#> 3 AIC -1.361355354e+5
#> 4 BIC -1.360267885e+5
#> 5 deviance 3.347652301e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -4.559784873e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.647924893e-1
#> 2 mean((Intercept)) -3.068257280e+0
#> 3 year.L 1.179169093e-1
#> 4 year.Q -1.748266989e-1
#> 5 year.C -3.230379410e-3
#> 6 year^4 -9.299835398e-2
#> 7 year^5 1.139034310e-1
#> 8 year^6 -5.388823428e-2
#> 9 year^7 -5.140243275e-3
#> 10 year^8 5.113576814e-2
#> 11 year^9 -2.421755327e-2
#> 12 year^10 -3.001423105e-2
#> 13 year^11 -7.893006275e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(38.489)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.601124170 0.004077341 -637.94616 < 2.22e-16 ***
#> year.L -0.221239238 0.014086278 -15.70601 < 2.22e-16 ***
#> year.Q 0.078115440 0.014179186 5.50916 0.000000036054493 ***
#> year.C 0.005758650 0.014116639 0.40793 0.68332249
#> year^4 -0.058430541 0.014093349 -4.14597 0.000033838461198 ***
#> year^5 0.068477692 0.014150746 4.83916 0.000001303904250 ***
#> year^6 0.002665934 0.014041834 0.18986 0.84942154
#> year^7 -0.007964157 0.014126746 -0.56376 0.57291445
#> year^8 0.046695378 0.014092086 3.31359 0.00092107 ***
#> year^9 -0.002246625 0.014028708 -0.16014 0.87276696
#> year^10 -0.094569778 0.014214460 -6.65307 0.000000000028704 ***
#> year^11 -0.023171492 0.014235985 -1.62767 0.10359478
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0285 Deviance explained = 1.87%
#> -REML = -38670 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.851689999e-2 weak cohen1988
#> 2 SE 2.301108092e-3 <NA> <NA>
#> 3 Lower CI 2.400681100e-2 weak cohen1988
#> 4 Upper CI 3.302698897e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 3.871102690e+4
#> 3 AIC -7.739605379e+4
#> 4 BIC -7.729309954e+4
#> 5 deviance 1.976947966e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 2.851689999e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.339194089e-1
#> 2 mean((Intercept)) -2.601124170e+0
#> 3 year.L -2.212392381e-1
#> 4 year.Q 7.811544047e-2
#> 5 year.C 5.758650085e-3
#> 6 year^4 -5.843054068e-2
#> 7 year^5 6.847769196e-2
#> 8 year^6 2.665934221e-3
#> 9 year^7 -7.964157318e-3
#> 10 year^8 4.669537841e-2
#> 11 year^9 -2.246625497e-3
#> 12 year^10 -9.456977790e-2
#> 13 year^11 -2.317149246e-2
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(35.093)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.268126583 0.010262308 -221.01525 < 2.22e-16 ***
#> year.L -0.349342664 0.035482444 -9.84551 < 2.22e-16 ***
#> year.Q 0.118855625 0.035612748 3.33745 0.00084552 ***
#> year.C -0.007878134 0.035733439 -0.22047 0.82550551
#> year^4 -0.019372846 0.035323568 -0.54844 0.58339004
#> year^5 0.087681548 0.035681486 2.45734 0.01399701 *
#> year^6 -0.083700324 0.035219866 -2.37651 0.01747734 *
#> year^7 -0.025897709 0.035565035 -0.72818 0.46650407
#> year^8 0.100549311 0.035482342 2.83378 0.00460003 **
#> year^9 0.039742476 0.035343749 1.12446 0.26081979
#> year^10 -0.141721586 0.036103188 -3.92546 0.000086564 ***
#> year^11 -0.005692148 0.035490482 -0.16039 0.87257765
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0455 Deviance explained = 5.16%
#> -REML = -4657.5 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.545270470e-2 weak cohen1988
#> 2 SE 7.723581311e-3 <NA> <NA>
#> 3 Lower CI 3.031476350e-2 weak cohen1988
#> 4 Upper CI 6.059064590e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.687741024e+3
#> 3 AIC -9.349482048e+3
#> 4 BIC -9.272436214e+3
#> 5 deviance 2.677966059e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 4.545270470e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.129085861e-1
#> 2 mean((Intercept)) -2.268126583e+0
#> 3 year.L -3.493426642e-1
#> 4 year.Q 1.188556253e-1
#> 5 year.C -7.878133913e-3
#> 6 year^4 -1.937284601e-2
#> 7 year^5 8.768154802e-2
#> 8 year^6 -8.370032358e-2
#> 9 year^7 -2.589770892e-2
#> 10 year^8 1.005493105e-1
#> 11 year^9 3.974247609e-2
#> 12 year^10 -1.417215861e-1
#> 13 year^11 -5.692147857e-3
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_gam_5_by_misfs,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_5_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
beipr_gam_5_by_misfs <-
data |>
gam_misfs(beipr ~ year)
data |>
summarise_gam_misfs(beipr_gam_5_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.127)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.653683063 0.007822268 -339.24725 < 2.22e-16 ***
#> year.L 0.363126602 0.027254975 13.32331 < 2.22e-16 ***
#> year.Q 0.006592482 0.027315449 0.24135 0.8092867
#> year.C -0.067126106 0.027355416 -2.45385 0.0141336 *
#> year^4 -0.026716047 0.027091455 -0.98614 0.3240630
#> year^5 0.072639093 0.027086258 2.68177 0.0073234 **
#> year^6 -0.067121673 0.026968738 -2.48887 0.0128150 *
#> year^7 -0.106999017 0.026960591 -3.96872 0.00007226 ***
#> year^8 0.049467750 0.026962598 1.83468 0.0665531 .
#> year^9 0.016125260 0.027014572 0.59691 0.5505677
#> year^10 -0.019663087 0.027145861 -0.72435 0.4688513
#> year^11 0.027474518 0.026908162 1.02105 0.3072318
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0299 Deviance explained = 2.71%
#> -REML = -14282 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.431571354e+4
#> 3 AIC -2.860542709e+4
#> 4 BIC -2.851470122e+4
#> 5 deviance 8.071957558e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -2.986476328e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.004902740e-1
#> 2 mean((Intercept)) -2.653683063e+0
#> 3 year.L 3.631266025e-1
#> 4 year.Q 6.592482359e-3
#> 5 year.C -6.712610602e-2
#> 6 year^4 -2.671604750e-2
#> 7 year^5 7.263909259e-2
#> 8 year^6 -6.712167258e-2
#> 9 year^7 -1.069990172e-1
#> 10 year^8 4.946775019e-2
#> 11 year^9 1.612525957e-2
#> 12 year^10 -1.966308709e-2
#> 13 year^11 2.747451788e-2
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.666)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.848403801 0.004212082 -676.24608 < 2.22e-16 ***
#> year.L 0.164472875 0.014594109 11.26981 < 2.22e-16 ***
#> year.Q -0.042234319 0.014759944 -2.86141 0.0042176 **
#> year.C -0.026048138 0.014657237 -1.77715 0.0755432 .
#> year^4 -0.102261347 0.014581803 -7.01294 2.3336e-12 ***
#> year^5 0.113377180 0.014552940 7.79067 6.6654e-15 ***
#> year^6 -0.033556378 0.014535455 -2.30859 0.0209665 *
#> year^7 -0.042350207 0.014462416 -2.92829 0.0034083 **
#> year^8 0.061968334 0.014463510 4.28446 1.8318e-05 ***
#> year^9 -0.008431711 0.014541208 -0.57985 0.5620162
#> year^10 0.012862093 0.014613024 0.88018 0.3787618
#> year^11 0.062101003 0.014736983 4.21396 2.5094e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0159 Deviance explained = 0.926%
#> -REML = -61291 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 6.133176478e+4
#> 3 AIC -1.226375296e+5
#> 4 BIC -1.225287827e+5
#> 5 deviance 3.310622465e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -1.591864228e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.240420346e-1
#> 2 mean((Intercept)) -2.848403801e+0
#> 3 year.L 1.644728747e-1
#> 4 year.Q -4.223431950e-2
#> 5 year.C -2.604813772e-2
#> 6 year^4 -1.022613469e-1
#> 7 year^5 1.133771804e-1
#> 8 year^6 -3.355637823e-2
#> 9 year^7 -4.235020665e-2
#> 10 year^8 6.196833446e-2
#> 11 year^9 -8.431711219e-3
#> 12 year^10 1.286209285e-2
#> 13 year^11 6.210100337e-2
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(72.251)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.502196791 0.002989478 -837.00117 < 2.22e-16 ***
#> year.L -0.148795186 0.010256389 -14.50756 < 2.22e-16 ***
#> year.Q 0.140467010 0.010344901 13.57838 < 2.22e-16 ***
#> year.C -0.015295539 0.010349307 -1.47793 0.13942683
#> year^4 -0.045210704 0.010310435 -4.38495 0.0000116015 ***
#> year^5 0.031196138 0.010306005 3.02699 0.00247005 **
#> year^6 -0.048162565 0.010293102 -4.67911 0.0000028812 ***
#> year^7 -0.027614694 0.010329294 -2.67343 0.00750789 **
#> year^8 0.015704477 0.010361007 1.51573 0.12958795
#> year^9 0.024284210 0.010396450 2.33582 0.01950075 *
#> year^10 -0.026072357 0.010468922 -2.49045 0.01275804 *
#> year^11 0.035524684 0.010496031 3.38458 0.00071287 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.036 Deviance explained = 2.34%
#> -REML = -42819 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.600156273e-2 weak cohen1988
#> 2 SE 2.565592159e-3 <NA> <NA>
#> 3 Lower CI 3.097309450e-2 weak cohen1988
#> 4 Upper CI 4.103003096e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.286366655e+4
#> 3 AIC -8.570133310e+4
#> 4 BIC -8.559837885e+4
#> 5 deviance 2.003054550e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 3.600156273e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.138476097e-1
#> 2 mean((Intercept)) -2.502196791e+0
#> 3 year.L -1.487951861e-1
#> 4 year.Q 1.404670099e-1
#> 5 year.C -1.529553927e-2
#> 6 year^4 -4.521070365e-2
#> 7 year^5 3.119613812e-2
#> 8 year^6 -4.816256519e-2
#> 9 year^7 -2.761469368e-2
#> 10 year^8 1.570447713e-2
#> 11 year^9 2.428421035e-2
#> 12 year^10 -2.607235722e-2
#> 13 year^11 3.552468419e-2
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(52.212)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.925855145 0.007633206 -252.29966 < 2.22e-16 ***
#> year.L -0.197665440 0.026515721 -7.45465 0.000000000000090106 ***
#> year.Q 0.061061663 0.026628696 2.29308 0.021844 *
#> year.C 0.056733481 0.026641358 2.12953 0.033211 *
#> year^4 -0.048045087 0.026391217 -1.82050 0.068684 .
#> year^5 0.037930444 0.026437739 1.43471 0.151370
#> year^6 -0.065299046 0.026322574 -2.48072 0.013112 *
#> year^7 -0.006545489 0.026302884 -0.24885 0.803476
#> year^8 0.048114722 0.026298952 1.82953 0.067320 .
#> year^9 0.010639848 0.026374879 0.40341 0.686648
#> year^10 -0.022898650 0.026567896 -0.86189 0.388747
#> year^11 0.009279899 0.026379237 0.35179 0.724997
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0327 Deviance explained = 2.94%
#> -REML = -4685.3 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.271189059e-2 weak cohen1988
#> 2 SE 6.639724773e-3 <NA> <NA>
#> 3 Lower CI 1.969826917e-2 very weak (negligible) cohen1988
#> 4 Upper CI 4.572551202e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.719121470e+3
#> 3 AIC -9.412242941e+3
#> 4 BIC -9.335197107e+3
#> 5 deviance 2.714505806e+3
#> 6 df.residual 2.758000000e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 3.271189059e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.702124000e-1
#> 2 mean((Intercept)) -1.925855145e+0
#> 3 year.L -1.976654395e-1
#> 4 year.Q 6.106166326e-2
#> 5 year.C 5.673348110e-2
#> 6 year^4 -4.804508736e-2
#> 7 year^5 3.793044361e-2
#> 8 year^6 -6.529904630e-2
#> 9 year^7 -6.545489025e-3
#> 10 year^8 4.811472178e-2
#> 11 year^9 1.063984833e-2
#> 12 year^10 -2.289864971e-2
#> 13 year^11 9.279899115e-3
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = beipr_gam_5_by_misfs,
type = 5,
x_label = "Years",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_5_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mbepr_beipr_gam_5_by_misfs <-
data |>
gam_misfs(mbepr_beipr ~ year)
data |>
summarise_gam_misfs(mbepr_beipr_gam_5_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(17.202)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.927800978 0.007327002 -263.10912 < 2.22e-16 ***
#> year.L 0.155049954 0.025596459 6.05748 0.0000000013827 ***
#> year.Q -0.034396274 0.025664489 -1.34023 0.1801711
#> year.C -0.006036878 0.025713990 -0.23477 0.8143871
#> year^4 -0.048352778 0.025401956 -1.90351 0.0569745 .
#> year^5 0.144445424 0.025364494 5.69479 0.0000000123525 ***
#> year^6 -0.104062168 0.025157411 -4.13644 0.0000352732685 ***
#> year^7 -0.040925467 0.025253863 -1.62056 0.1051115
#> year^8 0.048076497 0.025252105 1.90386 0.0569283 .
#> year^9 -0.005973620 0.025227551 -0.23679 0.8128201
#> year^10 -0.074641489 0.025428484 -2.93535 0.0033317 **
#> year^11 -0.024117334 0.025127362 -0.95980 0.3371540
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.011 Deviance explained = 1.35%
#> -REML = -9870.1 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 9.904385109e+3
#> 3 AIC -1.978277022e+4
#> 4 BIC -1.969204436e+4
#> 5 deviance 7.756093795e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -1.096589072e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.598945925e-1
#> 2 mean((Intercept)) -1.927800978e+0
#> 3 year.L 1.550499540e-1
#> 4 year.Q -3.439627366e-2
#> 5 year.C -6.036878490e-3
#> 6 year^4 -4.835277765e-2
#> 7 year^5 1.444454242e-1
#> 8 year^6 -1.040621684e-1
#> 9 year^7 -4.092546705e-2
#> 10 year^8 4.807649683e-2
#> 11 year^9 -5.973619732e-3
#> 12 year^10 -7.464148930e-2
#> 13 year^11 -2.411733376e-2
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(16.45)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.201794018 0.004008320 -549.30597 < 2.22e-16 ***
#> year.L 0.040093785 0.013924671 2.87933 0.00398515 **
#> year.Q -0.083392401 0.014042704 -5.93849 2.8767e-09 ***
#> year.C -0.011116822 0.013971517 -0.79568 0.42621951
#> year^4 -0.072295526 0.013891383 -5.20434 1.9468e-07 ***
#> year^5 0.112196244 0.013857588 8.09638 5.6621e-16 ***
#> year^6 -0.053673556 0.013822192 -3.88314 0.00010311 ***
#> year^7 -0.026248013 0.013783413 -1.90432 0.05686867 .
#> year^8 0.054572752 0.013781906 3.95974 7.5032e-05 ***
#> year^9 -0.002179925 0.013824727 -0.15768 0.87470654
#> year^10 -0.010776896 0.013886529 -0.77607 0.43770862
#> year^11 0.029660260 0.013948448 2.12642 0.03346829 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00237 Deviance explained = 0.56%
#> -REML = -44226 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.426792248e+4
#> 3 AIC -8.850984496e+4
#> 4 BIC -8.840109809e+4
#> 5 deviance 3.182959169e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -2.365279760e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.854128428e-1
#> 2 mean((Intercept)) -2.201794018e+0
#> 3 year.L 4.009378510e-2
#> 4 year.Q -8.339240135e-2
#> 5 year.C -1.111682189e-2
#> 6 year^4 -7.229552586e-2
#> 7 year^5 1.121962443e-1
#> 8 year^6 -5.367355552e-2
#> 9 year^7 -2.624801252e-2
#> 10 year^8 5.457275223e-2
#> 11 year^9 -2.179925447e-3
#> 12 year^10 -1.077689582e-2
#> 13 year^11 2.966026049e-2
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(32.314)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.7748564177 0.0033447160 -530.64488 < 2.22e-16 ***
#> year.L -0.2594420089 0.0115120249 -22.53661 < 2.22e-16 ***
#> year.Q 0.1363862197 0.0115958679 11.76162 < 2.22e-16 ***
#> year.C 0.0012775965 0.0115719081 0.11041 0.91208819
#> year^4 -0.0548553810 0.0115527519 -4.74825 0.00000205182 ***
#> year^5 0.0443979132 0.0115655057 3.83882 0.00012363 ***
#> year^6 -0.0231459262 0.0115222410 -2.00880 0.04455790 *
#> year^7 -0.0104135840 0.0115768225 -0.89952 0.36837572
#> year^8 0.0237630550 0.0115831063 2.05153 0.04021565 *
#> year^9 0.0199901948 0.0115759610 1.72687 0.08419078 .
#> year^10 -0.0617533698 0.0116776235 -5.28818 0.00000012354 ***
#> year^11 0.0007588868 0.0117154010 0.06478 0.94835167
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0434 Deviance explained = 3.53%
#> -REML = -28926 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.335752981e-2 weak cohen1988
#> 2 SE 2.794039468e-3 <NA> <NA>
#> 3 Lower CI 3.788131308e-2 weak cohen1988
#> 4 Upper CI 4.883374654e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 2.897004590e+4
#> 3 AIC -5.791409181e+4
#> 4 BIC -5.781113756e+4
#> 5 deviance 1.982049212e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 4.335752981e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.631577351e-1
#> 2 mean((Intercept)) -1.774856418e+0
#> 3 year.L -2.594420089e-1
#> 4 year.Q 1.363862197e-1
#> 5 year.C 1.277596535e-3
#> 6 year^4 -5.485538104e-2
#> 7 year^5 4.439791322e-2
#> 8 year^6 -2.314592619e-2
#> 9 year^7 -1.041358398e-2
#> 10 year^8 2.376305505e-2
#> 11 year^9 1.999019478e-2
#> 12 year^10 -6.175336983e-2
#> 13 year^11 7.588868352e-4
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(24.343)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.258354871 0.008929517 -140.92082 < 2.22e-16 ***
#> year.L -0.345509238 0.030979054 -11.15300 < 2.22e-16 ***
#> year.Q 0.111788551 0.031051612 3.60009 0.00031811 ***
#> year.C 0.034028105 0.031098416 1.09421 0.27386419
#> year^4 -0.025903944 0.030851767 -0.83963 0.40111816
#> year^5 0.051005021 0.030976997 1.64655 0.09965160 .
#> year^6 -0.079249591 0.030792775 -2.57364 0.01006342 *
#> year^7 -0.005113017 0.030865679 -0.16565 0.86842941
#> year^8 0.071840113 0.030835764 2.32977 0.01981853 *
#> year^9 0.027230290 0.030836002 0.88307 0.37719947
#> year^10 -0.073558247 0.031130417 -2.36291 0.01813227 *
#> year^11 -0.006569161 0.030839502 -0.21301 0.83131819
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0573 Deviance explained = 5.65%
#> -REML = -3037.9 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 5.729349284e-2 weak cohen1988
#> 2 SE 8.563879749e-3 <NA> <NA>
#> 3 Lower CI 4.050859696e-2 weak cohen1988
#> 4 Upper CI 7.407838871e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 3.069860234e+3
#> 3 AIC -6.113720467e+3
#> 4 BIC -6.036674633e+3
#> 5 deviance 2.685543298e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 5.729349284e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.248638324e-1
#> 2 mean((Intercept)) -1.258354871e+0
#> 3 year.L -3.455092381e-1
#> 4 year.Q 1.117885509e-1
#> 5 year.C 3.402810537e-2
#> 6 year^4 -2.590394381e-2
#> 7 year^5 5.100502078e-2
#> 8 year^6 -7.924959098e-2
#> 9 year^7 -5.113016893e-3
#> 10 year^8 7.184011345e-2
#> 11 year^9 2.723029014e-2
#> 12 year^10 -7.355824724e-2
#> 13 year^11 -6.569160708e-3
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_beipr_gam_5_by_misfs,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_5_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_gam_5_by_misfs <-
data |>
gam_misfs(maper ~ year)
data |>
summarise_gam_misfs(maper_gam_5_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.761)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.530069222 0.009802718 -360.11128 < 2.22e-16 ***
#> year.L 0.104598923 0.034445367 3.03666 0.00239214 **
#> year.Q -0.194940662 0.034505042 -5.64963 0.00000001608 ***
#> year.C -0.069618293 0.034281636 -2.03078 0.04227781 *
#> year^4 -0.112521422 0.034064505 -3.30319 0.00095593 ***
#> year^5 0.075751354 0.034155401 2.21784 0.02656547 *
#> year^6 0.049211214 0.033939964 1.44995 0.14707276
#> year^7 0.002841143 0.033756387 0.08417 0.93292437
#> year^8 0.134923449 0.033567360 4.01948 0.00005832586 ***
#> year^9 0.004377093 0.033514215 0.13060 0.89608852
#> year^10 -0.033243415 0.033703404 -0.98635 0.32396049
#> year^11 -0.019870002 0.033581458 -0.59170 0.55405443
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0079 Deviance explained = 0.957%
#> -REML = -20716 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 2.074635089e+4
#> 3 AIC -4.146670177e+4
#> 4 BIC -4.137597591e+4
#> 5 deviance 8.433850322e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -7.903895660e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.990466532e-1
#> 2 mean((Intercept)) -3.530069222e+0
#> 3 year.L 1.045989226e-1
#> 4 year.Q -1.949406618e-1
#> 5 year.C -6.961829296e-2
#> 6 year^4 -1.125214220e-1
#> 7 year^5 7.575135391e-2
#> 8 year^6 4.921121425e-2
#> 9 year^7 2.841143292e-3
#> 10 year^8 1.349234490e-1
#> 11 year^9 4.377093057e-3
#> 12 year^10 -3.324341471e-2
#> 13 year^11 -1.987000168e-2
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.009)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.947715665 0.005230480 -754.75214 < 2.22e-16 ***
#> year.L 0.087036958 0.018122175 4.80279 0.00000156471910 ***
#> year.Q -0.113028621 0.018263601 -6.18874 0.00000000060648 ***
#> year.C -0.105741910 0.018137515 -5.83001 0.00000000554237 ***
#> year^4 -0.107411419 0.018126852 -5.92554 0.00000000311270 ***
#> year^5 0.079974056 0.018101738 4.41803 0.00000996036822 ***
#> year^6 0.018644792 0.018088259 1.03077 0.3026498
#> year^7 0.047323466 0.018029506 2.62478 0.0086705 **
#> year^8 0.092256007 0.018013711 5.12143 0.00000030322303 ***
#> year^9 -0.005596113 0.018048568 -0.31006 0.7565164
#> year^10 -0.003568097 0.018101221 -0.19712 0.8437343
#> year^11 0.009635605 0.018272946 0.52732 0.5979746
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00248 Deviance explained = 0.544%
#> -REML = -1.0446e+05 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.044996352e+5
#> 3 AIC -2.089732704e+5
#> 4 BIC -2.088645236e+5
#> 5 deviance 3.427644493e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -2.481012795e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.290159117e-1
#> 2 mean((Intercept)) -3.947715665e+0
#> 3 year.L 8.703695810e-2
#> 4 year.Q -1.130286207e-1
#> 5 year.C -1.057419100e-1
#> 6 year^4 -1.074114192e-1
#> 7 year^5 7.997405596e-2
#> 8 year^6 1.864479189e-2
#> 9 year^7 4.732346563e-2
#> 10 year^8 9.225600677e-2
#> 11 year^9 -5.596112765e-3
#> 12 year^10 -3.568097065e-3
#> 13 year^11 9.635605145e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(51.613)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.400622395 0.004764848 -713.68955 < 2.22e-16 ***
#> year.L -0.156051988 0.016747421 -9.31797 < 2.22e-16 ***
#> year.Q -0.128726095 0.016714329 -7.70154 0.000000000000013443 ***
#> year.C -0.005769232 0.016587436 -0.34781 0.7279849
#> year^4 -0.024311829 0.016575313 -1.46675 0.1424443
#> year^5 0.072274727 0.016663513 4.33730 0.000014424083339625 ***
#> year^6 0.049416716 0.016514786 2.99227 0.0027691 **
#> year^7 0.010033851 0.016506714 0.60786 0.5432771
#> year^8 0.074491098 0.016371442 4.55006 0.000005362977646052 ***
#> year^9 -0.014569827 0.016226118 -0.89792 0.3692259
#> year^10 -0.086108370 0.016350984 -5.26625 0.000000139238658588 ***
#> year^11 0.035871456 0.016297906 2.20099 0.0277370 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0109 Deviance explained = 1.15%
#> -REML = -50950 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.094496673e-2 very weak (negligible) cohen1988
#> 2 SE 1.451370507e-3 <NA> <NA>
#> 3 Lower CI 8.100332809e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.378960065e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 5.098980161e+4
#> 3 AIC -1.019536032e+5
#> 4 BIC -1.018506490e+5
#> 5 deviance 2.004505690e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 1.094496673e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.978393239e-1
#> 2 mean((Intercept)) -3.400622395e+0
#> 3 year.L -1.560519880e-1
#> 4 year.Q -1.287260955e-1
#> 5 year.C -5.769231516e-3
#> 6 year^4 -2.431182856e-2
#> 7 year^5 7.227472733e-2
#> 8 year^6 4.941671618e-2
#> 9 year^7 1.003385092e-2
#> 10 year^8 7.449109809e-2
#> 11 year^9 -1.456982668e-2
#> 12 year^10 -8.610837016e-2
#> 13 year^11 3.587145623e-2
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(84.23)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.515374052 0.011174422 -314.59113 < 2.22e-16 ***
#> year.L -0.230141752 0.039373090 -5.84515 0.000000005061 ***
#> year.Q -0.094313845 0.039229772 -2.40414 0.016211 *
#> year.C -0.114018442 0.039109754 -2.91535 0.003553 **
#> year^4 -0.003614870 0.038856951 -0.09303 0.925880
#> year^5 0.094367111 0.039007013 2.41923 0.015553 *
#> year^6 -0.009984777 0.038729265 -0.25781 0.796554
#> year^7 0.057408694 0.038592128 1.48758 0.136863
#> year^8 0.057557812 0.038355782 1.50063 0.133451
#> year^9 -0.029429933 0.038200427 -0.77041 0.441058
#> year^10 -0.036098574 0.038367993 -0.94085 0.346781
#> year^11 0.039762754 0.037953787 1.04766 0.294794
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0202 Deviance explained = 2.23%
#> -REML = -7541 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.021475971e-2 weak cohen1988
#> 2 SE 5.286966888e-3 <NA> <NA>
#> 3 Lower CI 9.852495026e-3 very weak (negligible) cohen1988
#> 4 Upper CI 3.057702440e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 7.570286498e+3
#> 3 AIC -1.511457300e+4
#> 4 BIC -1.503752716e+4
#> 5 deviance 2.705752165e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 2.021475971e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.153233228e-1
#> 2 mean((Intercept)) -3.515374052e+0
#> 3 year.L -2.301417517e-1
#> 4 year.Q -9.431384514e-2
#> 5 year.C -1.140184421e-1
#> 6 year^4 -3.614870049e-3
#> 7 year^5 9.436711105e-2
#> 8 year^6 -9.984777060e-3
#> 9 year^7 5.740869375e-2
#> 10 year^8 5.755781222e-2
#> 11 year^9 -2.942993275e-2
#> 12 year^10 -3.609857360e-2
#> 13 year^11 3.976275366e-2
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_gam_5_by_misfs,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MAPER"
)
maper_gam_5_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
mpepr_gam_5_by_misfs <-
data |>
gam_misfs(mpepr ~ year)
data |>
summarise_gam_misfs(mpepr_gam_5_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(31.103)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.418001960 0.008985228 -380.40237 < 2.22e-16 ***
#> year.L 0.303094333 0.031609890 9.58859 < 2.22e-16 ***
#> year.Q -0.158190676 0.031750384 -4.98232 0.00000062825 ***
#> year.C -0.097470279 0.031462320 -3.09800 0.00194831 **
#> year^4 -0.138041366 0.031282628 -4.41272 0.00001020817 ***
#> year^5 -0.009086991 0.031237449 -0.29090 0.77112738
#> year^6 0.049991213 0.031092736 1.60781 0.10787678
#> year^7 -0.038833115 0.030857266 -1.25848 0.20821983
#> year^8 0.059640021 0.030709881 1.94205 0.05213146 .
#> year^9 -0.024743805 0.030708151 -0.80577 0.42037363
#> year^10 0.016476066 0.030781723 0.53525 0.59247365
#> year^11 0.119592933 0.030868570 3.87426 0.00010695 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0362 Deviance explained = 2.05%
#> -REML = -19440 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.947212870e+4
#> 3 AIC -3.891825739e+4
#> 4 BIC -3.882753153e+4
#> 5 deviance 8.411778743e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -3.620918501e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.779644688e-1
#> 2 mean((Intercept)) -3.418001960e+0
#> 3 year.L 3.030943327e-1
#> 4 year.Q -1.581906756e-1
#> 5 year.C -9.747027879e-2
#> 6 year^4 -1.380413663e-1
#> 7 year^5 -9.086991047e-3
#> 8 year^6 4.999121349e-2
#> 9 year^7 -3.883311475e-2
#> 10 year^8 5.964002057e-2
#> 11 year^9 -2.474380508e-2
#> 12 year^10 1.647606597e-2
#> 13 year^11 1.195929332e-1
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.906)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.738960964 0.004992705 -748.88475 < 2.22e-16 ***
#> year.L 0.221077589 0.017235399 12.82695 < 2.22e-16 ***
#> year.Q 0.012081960 0.017484799 0.69100 0.48956685
#> year.C -0.082749263 0.017281986 -4.78818 0.000001683 ***
#> year^4 -0.215515173 0.017280621 -12.47149 < 2.22e-16 ***
#> year^5 0.039394268 0.017260073 2.28239 0.02246616 *
#> year^6 0.069864307 0.017249593 4.05020 0.000051174 ***
#> year^7 0.059107063 0.017159763 3.44452 0.00057208 ***
#> year^8 0.075172297 0.017141556 4.38538 0.000011578 ***
#> year^9 0.007909703 0.017212102 0.45954 0.64584421
#> year^10 0.017543664 0.017317823 1.01304 0.31104060
#> year^11 0.008739832 0.017618222 0.49607 0.61984660
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00743 Deviance explained = 1.15%
#> -REML = -90886 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 9.092481949e+4
#> 3 AIC -1.818236390e+5
#> 4 BIC -1.817148921e+5
#> 5 deviance 3.487532075e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -7.427616944e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.938612265e-1
#> 2 mean((Intercept)) -3.738960964e+0
#> 3 year.L 2.210775893e-1
#> 4 year.Q 1.208195970e-2
#> 5 year.C -8.274926344e-2
#> 6 year^4 -2.155151734e-1
#> 7 year^5 3.939426779e-2
#> 8 year^6 6.986430678e-2
#> 9 year^7 5.910706343e-2
#> 10 year^8 7.517229733e-2
#> 11 year^9 7.909702610e-3
#> 12 year^10 1.754366441e-2
#> 13 year^11 8.739831703e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(87.973)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.329260365 0.003776245 -881.63259 < 2.22e-16 ***
#> year.L -0.066944070 0.013287304 -5.03820 0.00000046994 ***
#> year.Q -0.119293498 0.013280073 -8.98289 < 2.22e-16 ***
#> year.C 0.021973098 0.013169676 1.66846 0.0952241 .
#> year^4 -0.038821997 0.013191626 -2.94293 0.0032512 **
#> year^5 -0.020191074 0.013118969 -1.53907 0.1237860
#> year^6 0.036234449 0.013094189 2.76722 0.0056537 **
#> year^7 -0.002668151 0.013035156 -0.20469 0.8378152
#> year^8 -0.016756343 0.012982576 -1.29068 0.1968149
#> year^9 -0.033482543 0.012924629 -2.59060 0.0095809 **
#> year^10 0.004664769 0.012853677 0.36291 0.7166697
#> year^11 0.006941334 0.012948368 0.53608 0.5919047
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.00809 Deviance explained = 0.688%
#> -REML = -53469 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 8.093105311e-3 very weak (negligible) cohen1988
#> 2 SE 1.251639090e-3 <NA> <NA>
#> 3 Lower CI 5.639937773e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.054627285e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 5.351150485e+4
#> 3 AIC -1.069970097e+5
#> 4 BIC -1.068940554e+5
#> 5 deviance 2.017974368e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 8.093105311e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.964670326e-1
#> 2 mean((Intercept)) -3.329260365e+0
#> 3 year.L -6.694406960e-2
#> 4 year.Q -1.192934981e-1
#> 5 year.C 2.197309827e-2
#> 6 year^4 -3.882199701e-2
#> 7 year^5 -2.019107405e-2
#> 8 year^6 3.623444919e-2
#> 9 year^7 -2.668151440e-3
#> 10 year^8 -1.675634330e-2
#> 11 year^9 -3.348254256e-2
#> 12 year^10 4.664769297e-3
#> 13 year^11 6.941333709e-3
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(117.623)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.317347903 0.008989679 -369.01738 < 2.22e-16 ***
#> year.L -0.100166486 0.031690452 -3.16078 0.0015735 **
#> year.Q -0.093514337 0.031543235 -2.96464 0.0030304 **
#> year.C -0.035982148 0.031531742 -1.14114 0.2538115
#> year^4 0.006963582 0.031279783 0.22262 0.8238294
#> year^5 0.058011246 0.031279652 1.85460 0.0636534 .
#> year^6 -0.035862589 0.031206635 -1.14920 0.2504745
#> year^7 0.048180826 0.030966098 1.55592 0.1197267
#> year^8 0.036398244 0.030863216 1.17934 0.2382626
#> year^9 -0.083403748 0.030898803 -2.69926 0.0069495 **
#> year^10 0.018230570 0.030806937 0.59177 0.5540057
#> year^11 0.002568151 0.030463825 0.08430 0.9328166
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.00546 Deviance explained = 1.33%
#> -REML = -7565.5 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 5.458795517e-3 very weak (negligible) cohen1988
#> 2 SE 2.788769371e-3 <NA> <NA>
#> 3 Lower CI -7.092011279e-6 no effect cohen1988
#> 4 Upper CI 1.092468305e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 7.597365316e+3
#> 3 AIC -1.516873063e+4
#> 4 BIC -1.509168480e+4
#> 5 deviance 2.718494668e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 5.458795517e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.913270493e-1
#> 2 mean((Intercept)) -3.317347903e+0
#> 3 year.L -1.001664860e-1
#> 4 year.Q -9.351433711e-2
#> 5 year.C -3.598214764e-2
#> 6 year^4 6.963582014e-3
#> 7 year^5 5.801124577e-2
#> 8 year^6 -3.586258854e-2
#> 9 year^7 4.818082615e-2
#> 10 year^8 3.639824436e-2
#> 11 year^9 -8.340374788e-2
#> 12 year^10 1.823057012e-2
#> 13 year^11 2.568150652e-3
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mpepr_gam_5_by_misfs,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_5_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Code
maper_mpepr_gam_5_by_misfs <-
data |>
gam_misfs(maper_mpepr ~ year)
data |>
summarise_gam_misfs(maper_mpepr_gam_5_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.539)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.739534862 0.008193872 -334.33946 < 2.22e-16 ***
#> year.L 0.082363380 0.028987838 2.84131 0.0044929 **
#> year.Q -0.220214939 0.028964569 -7.60291 0.000000000000028955 ***
#> year.C -0.071155219 0.028714511 -2.47802 0.0132113 *
#> year^4 -0.067622213 0.028554304 -2.36820 0.0178750 *
#> year^5 -0.004810695 0.028628284 -0.16804 0.8665519
#> year^6 0.061860888 0.028446118 2.17467 0.0296549 *
#> year^7 -0.005878489 0.028196928 -0.20848 0.8348544
#> year^8 0.094310981 0.027973611 3.37143 0.0007478 ***
#> year^9 -0.025048934 0.027892481 -0.89805 0.3691571
#> year^10 -0.003939729 0.027970941 -0.14085 0.8879878
#> year^11 0.038761967 0.027867424 1.39094 0.1642431
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0105 Deviance explained = 1.21%
#> -REML = -14639 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.467225123e+4
#> 3 AIC -2.931850246e+4
#> 4 BIC -2.922777659e+4
#> 5 deviance 8.012581771e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -1.046017779e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.384089887e-1
#> 2 mean((Intercept)) -2.739534862e+0
#> 3 year.L 8.236338037e-2
#> 4 year.Q -2.202149387e-1
#> 5 year.C -7.115521932e-2
#> 6 year^4 -6.762221310e-2
#> 7 year^5 -4.810694715e-3
#> 8 year^6 6.186088808e-2
#> 9 year^7 -5.878489484e-3
#> 10 year^8 9.431098100e-2
#> 11 year^9 -2.504893401e-2
#> 12 year^10 -3.939728953e-3
#> 13 year^11 3.876196677e-2
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.318)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.124703269 0.004814081 -649.07572 < 2.22e-16 ***
#> year.L 0.100863495 0.016648945 6.05825 0.00000000137609 ***
#> year.Q -0.028135499 0.016892394 -1.66557 0.095799 .
#> year.C -0.105013255 0.016687318 -6.29300 0.00000000031139 ***
#> year^4 -0.203844570 0.016660694 -12.23506 < 2.22e-16 ***
#> year^5 0.065707778 0.016659323 3.94420 0.00008006532378 ***
#> year^6 0.055786070 0.016640398 3.35245 0.000801 ***
#> year^7 0.079608090 0.016524969 4.81744 0.00000145409931 ***
#> year^8 0.099892126 0.016494522 6.05608 0.00000000139480 ***
#> year^9 0.003558448 0.016575211 0.21468 0.830013
#> year^10 0.022954355 0.016691884 1.37518 0.169075
#> year^11 -0.004565760 0.016959601 -0.26921 0.787765
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00293 Deviance explained = 0.958%
#> -REML = -69446 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 6.948485640e+4
#> 3 AIC -1.389437128e+5
#> 4 BIC -1.388349659e+5
#> 5 deviance 3.380460192e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -2.933590148e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.531576660e-1
#> 2 mean((Intercept)) -3.124703269e+0
#> 3 year.L 1.008634953e-1
#> 4 year.Q -2.813549877e-2
#> 5 year.C -1.050132546e-1
#> 6 year^4 -2.038445702e-1
#> 7 year^5 6.570777771e-2
#> 8 year^6 5.578607016e-2
#> 9 year^7 7.960808955e-2
#> 10 year^8 9.989212561e-2
#> 11 year^9 3.558447647e-3
#> 12 year^10 2.295435488e-2
#> 13 year^11 -4.565760076e-3
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(47.029)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.63424132 0.00379491 -694.15115 < 2.22e-16 ***
#> year.L -0.19388264 0.01331919 -14.55664 < 2.22e-16 ***
#> year.Q -0.09853273 0.01329936 -7.40883 0.00000000000012742 ***
#> year.C 0.01465584 0.01319804 1.11046 0.26680250
#> year^4 -0.02233616 0.01322368 -1.68910 0.09119974 .
#> year^5 0.01495000 0.01321981 1.13088 0.25810634
#> year^6 0.04709845 0.01317008 3.57617 0.00034866 ***
#> year^7 0.02894606 0.01313051 2.20449 0.02748996 *
#> year^8 0.01641733 0.01305828 1.25724 0.20866850
#> year^9 -0.02147188 0.01298240 -1.65392 0.09814339 .
#> year^10 -0.02379351 0.01297583 -1.83368 0.06670170 .
#> year^11 0.01030478 0.01302273 0.79129 0.42877386
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0206 Deviance explained = 1.49%
#> -REML = -40561 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.062532839e-2 weak cohen1988
#> 2 SE 1.972876581e-3 <NA> <NA>
#> 3 Lower CI 1.675856135e-2 very weak (negligible) cohen1988
#> 4 Upper CI 2.449209544e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.060348116e+4
#> 3 AIC -8.118096232e+4
#> 4 BIC -8.107800807e+4
#> 5 deviance 1.989046593e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 2.062532839e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.384904811e-1
#> 2 mean((Intercept)) -2.634241318e+0
#> 3 year.L -1.938826392e-1
#> 4 year.Q -9.853273519e-2
#> 5 year.C 1.465584287e-2
#> 6 year^4 -2.233615566e-2
#> 7 year^5 1.494999766e-2
#> 8 year^6 4.709844919e-2
#> 9 year^7 2.894606344e-2
#> 10 year^8 1.641733306e-2
#> 11 year^9 -2.147187923e-2
#> 12 year^10 -2.379350694e-2
#> 13 year^11 1.030477466e-2
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(61.083)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.684646160 0.009359123 -286.84803 < 2.22e-16 ***
#> year.L -0.210167823 0.032975651 -6.37342 0.00000000018485 ***
#> year.Q -0.092082220 0.032836320 -2.80428 0.0050429 **
#> year.C -0.059427053 0.032764265 -1.81378 0.0697121 .
#> year^4 0.003131789 0.032551557 0.09621 0.9233537
#> year^5 0.064703168 0.032619275 1.98359 0.0473019 *
#> year^6 -0.016697182 0.032525210 -0.51336 0.6076987
#> year^7 0.064299439 0.032259521 1.99319 0.0462404 *
#> year^8 0.050280508 0.032108191 1.56597 0.1173553
#> year^9 -0.069140052 0.032116659 -2.15278 0.0313361 *
#> year^10 0.014253882 0.032077071 0.44436 0.6567797
#> year^11 0.011076706 0.031774920 0.34860 0.7273904
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0212 Deviance explained = 2.44%
#> -REML = -5871.2 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.117818155e-2 weak cohen1988
#> 2 SE 5.406166049e-3 <NA> <NA>
#> 3 Lower CI 1.058229080e-2 very weak (negligible) cohen1988
#> 4 Upper CI 3.177407230e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 5.902573955e+3
#> 3 AIC -1.177914791e+4
#> 4 BIC -1.170210208e+4
#> 5 deviance 2.706397613e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 2.117818155e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.437012497e-1
#> 2 mean((Intercept)) -2.684646160e+0
#> 3 year.L -2.101678227e-1
#> 4 year.Q -9.208221998e-2
#> 5 year.C -5.942705337e-2
#> 6 year^4 3.131789435e-3
#> 7 year^5 6.470316849e-2
#> 8 year^6 -1.669718212e-2
#> 9 year^7 6.429943875e-2
#> 10 year^8 5.028050845e-2
#> 11 year^9 -6.914005203e-2
#> 12 year^10 1.425388242e-2
#> 13 year^11 1.107670629e-2
Code
data |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_mpepr_gam_5_by_misfs,
type = 5,
x_label = "Years",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_5_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
By year
(Unordered)
In this model, the year
variable is treated as a unordered categorical variable.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(mbepr_gam_6_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.537)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.09424687 0.03427877 -90.26715 < 2.22e-16 ***
#> year2009 0.35266775 0.04594284 7.67623 0.000000000000016384 ***
#> year2010 0.37775186 0.04580514 8.24693 < 2.22e-16 ***
#> year2011 0.23380479 0.04645506 5.03292 0.000000483054025019 ***
#> year2012 0.17344883 0.04675819 3.70949 0.00020768 ***
#> year2013 0.32506147 0.04600019 7.06653 0.000000000001588614 ***
#> year2014 0.45806746 0.04531048 10.10953 < 2.22e-16 ***
#> year2015 0.34842813 0.04585668 7.59820 0.000000000000030028 ***
#> year2016 0.48081092 0.04530151 10.61357 < 2.22e-16 ***
#> year2017 0.35239697 0.04594416 7.67011 0.000000000000017184 ***
#> year2018 0.41602966 0.04561816 9.11983 < 2.22e-16 ***
#> year2019 0.40761286 0.04556986 8.94479 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0203 Deviance explained = 2.47%
#> -REML = -14556 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.458696428e+4
#> 3 AIC -2.914792856e+4
#> 4 BIC -2.905720269e+4
#> 5 deviance 8.119205011e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -2.027317837e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] 6.931948588e-2
#> 2 mean((Intercept)) -3.094246867e+0
#> 3 year2009 3.526677517e-1
#> 4 year2010 3.777518618e-1
#> 5 year2011 2.338047861e-1
#> 6 year2012 1.734488271e-1
#> 7 year2013 3.250614706e-1
#> 8 year2014 4.580674583e-1
#> 9 year2015 3.484281296e-1
#> 10 year2016 4.808109223e-1
#> 11 year2017 3.523969699e-1
#> 12 year2018 4.160296607e-1
#> 13 year2019 4.076128594e-1
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(16.507)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.27874915 0.01784467 -183.73827 < 2.22e-16 ***
#> year2009 0.21482871 0.02452461 8.75972 < 2.22e-16 ***
#> year2010 0.24718735 0.02439970 10.13075 < 2.22e-16 ***
#> year2011 0.16598082 0.02461120 6.74412 0.000000000015396 ***
#> year2012 0.16136986 0.02463144 6.55138 0.000000000057009 ***
#> year2013 0.25333422 0.02467987 10.26481 < 2.22e-16 ***
#> year2014 0.29507924 0.02457929 12.00520 < 2.22e-16 ***
#> year2015 0.26164151 0.02452007 10.67050 < 2.22e-16 ***
#> year2016 0.29456981 0.02435031 12.09717 < 2.22e-16 ***
#> year2017 0.25769537 0.02443079 10.54797 < 2.22e-16 ***
#> year2018 0.21090578 0.02443018 8.63300 < 2.22e-16 ***
#> year2019 0.16330978 0.02446471 6.67532 0.000000000024669 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00456 Deviance explained = 0.764%
#> -REML = -68043 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 6.808076769e+4
#> 3 AIC -1.361355354e+5
#> 4 BIC -1.360267885e+5
#> 5 deviance 3.347652301e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -4.559784873e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -6.273722487e-2
#> 2 mean((Intercept)) -3.278749151e+0
#> 3 year2009 2.148287090e-1
#> 4 year2010 2.471873542e-1
#> 5 year2011 1.659808185e-1
#> 6 year2012 1.613698600e-1
#> 7 year2013 2.533342166e-1
#> 8 year2014 2.950792367e-1
#> 9 year2015 2.616415114e-1
#> 10 year2016 2.945698147e-1
#> 11 year2017 2.576953696e-1
#> 12 year2018 2.109057842e-1
#> 13 year2019 1.633097776e-1
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(38.489)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.499558480 0.013918118 -179.59026 < 2.22e-16 ***
#> year2009 0.037046879 0.019339542 1.91560 0.055416 .
#> year2010 0.008275972 0.019465924 0.42515 0.670726
#> year2011 -0.049400274 0.019628098 -2.51681 0.011842 *
#> year2012 -0.177700784 0.019984739 -8.89182 < 2.22e-16 ***
#> year2013 -0.126004996 0.019933730 -6.32119 2.5955e-10 ***
#> year2014 -0.096231615 0.019786308 -4.86355 1.1530e-06 ***
#> year2015 -0.202062015 0.020140317 -10.03271 < 2.22e-16 ***
#> year2016 -0.105372594 0.019764896 -5.33130 9.7512e-08 ***
#> year2017 -0.158609478 0.019990019 -7.93443 2.1146e-15 ***
#> year2018 -0.184771030 0.020194355 -9.14964 < 2.22e-16 ***
#> year2019 -0.163958341 0.020023947 -8.18811 2.6535e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0285 Deviance explained = 1.87%
#> -REML = -38671 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.851689999e-2 weak cohen1988
#> 2 SE 2.301108092e-3 <NA> <NA>
#> 3 Lower CI 2.400681100e-2 weak cohen1988
#> 4 Upper CI 3.302698897e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 3.871102690e+4
#> 3 AIC -7.739605379e+4
#> 4 BIC -7.729309954e+4
#> 5 deviance 1.976947966e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 2.851689999e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.098622298e-1
#> 2 mean((Intercept)) -2.499558480e+0
#> 3 year2009 3.704687858e-2
#> 4 year2010 8.275972023e-3
#> 5 year2011 -4.940027410e-2
#> 6 year2012 -1.777007842e-1
#> 7 year2013 -1.260049959e-1
#> 8 year2014 -9.623161496e-2
#> 9 year2015 -2.020620149e-1
#> 10 year2016 -1.053725942e-1
#> 11 year2017 -1.586094778e-1
#> 12 year2018 -1.847710302e-1
#> 13 year2019 -1.639583411e-1
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(35.093)
#> Link function: logit
#>
#> Formula:
#> mbepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.08278548 0.03440989 -60.52869 < 2.22e-16 ***
#> year2009 0.03529121 0.04785209 0.73751 0.46081461
#> year2010 -0.05957442 0.04833477 -1.23254 0.21774829
#> year2011 -0.12840640 0.04889270 -2.62629 0.00863212 **
#> year2012 -0.32476414 0.05060426 -6.41772 0.00000000013833 ***
#> year2013 -0.16655027 0.04905061 -3.39548 0.00068509 ***
#> year2014 -0.12211249 0.04873553 -2.50562 0.01222385 *
#> year2015 -0.32146788 0.05034339 -6.38550 0.00000000017083 ***
#> year2016 -0.27119000 0.05000667 -5.42308 0.00000005858187 ***
#> year2017 -0.28255052 0.05016444 -5.63249 0.00000001776299 ***
#> year2018 -0.29671761 0.05046571 -5.87959 0.00000000411288 ***
#> year2019 -0.28605072 0.05048667 -5.66587 0.00000001462836 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0455 Deviance explained = 5.16%
#> -REML = -4658.7 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.545270470e-2 weak cohen1988
#> 2 SE 7.723581311e-3 <NA> <NA>
#> 3 Lower CI 3.031476350e-2 weak cohen1988
#> 4 Upper CI 6.059064590e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.687741024e+3
#> 3 AIC -9.349482048e+3
#> 4 BIC -9.272436214e+3
#> 5 deviance 2.677966059e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 4.545270470e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.589065592e-1
#> 2 mean((Intercept)) -2.082785480e+0
#> 3 year2009 3.529121217e-2
#> 4 year2010 -5.957442142e-2
#> 5 year2011 -1.284064023e-1
#> 6 year2012 -3.247641446e-1
#> 7 year2013 -1.665502666e-1
#> 8 year2014 -1.221124850e-1
#> 9 year2015 -3.214678849e-1
#> 10 year2016 -2.711899981e-1
#> 11 year2017 -2.825505162e-1
#> 12 year2018 -2.967176079e-1
#> 13 year2019 -2.860507157e-1
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_gam_6_by_misfs,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MBEPR"
)
mbepr_gam_6_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(beipr_gam_6_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.127)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.814996853 0.029385414 -95.79572 < 2.22e-16 ***
#> year2009 0.047204010 0.040554582 1.16396 0.24443923
#> year2010 0.102321228 0.040240677 2.54273 0.01099898 *
#> year2011 0.046227261 0.040502004 1.14136 0.25372123
#> year2012 -0.009950727 0.040823058 -0.24375 0.80742243
#> year2013 0.140876019 0.039977469 3.52389 0.00042527 ***
#> year2014 0.237032038 0.039429416 6.01155 0.000000001837540166 ***
#> year2015 0.265927609 0.039292365 6.76792 0.000000000013064633 ***
#> year2016 0.222930104 0.039596063 5.63011 0.000000018009694788 ***
#> year2017 0.256683443 0.039432108 6.50950 0.000000000075399663 ***
#> year2018 0.334969482 0.039014454 8.58578 < 2.22e-16 ***
#> year2019 0.291545019 0.039160268 7.44492 0.000000000000097004 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0299 Deviance explained = 2.71%
#> -REML = -14283 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.431571354e+4
#> 3 AIC -2.860542709e+4
#> 4 BIC -2.851470122e+4
#> 5 deviance 8.071957558e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -2.986476328e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -7.326928064e-2
#> 2 mean((Intercept)) -2.814996853e+0
#> 3 year2009 4.720401030e-2
#> 4 year2010 1.023212283e-1
#> 5 year2011 4.622726125e-2
#> 6 year2012 -9.950726588e-3
#> 7 year2013 1.408760186e-1
#> 8 year2014 2.370320376e-1
#> 9 year2015 2.659276085e-1
#> 10 year2016 2.229301040e-1
#> 11 year2017 2.566834431e-1
#> 12 year2018 3.349694817e-1
#> 13 year2019 2.915450188e-1
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.666)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.99950260 0.01547685 -193.80571 < 2.22e-16 ***
#> year2009 0.14475768 0.02124917 6.81239 0.00000000000959884 ***
#> year2010 0.19377589 0.02106989 9.19681 < 2.22e-16 ***
#> year2011 0.08340476 0.02140071 3.89729 0.00009727491473461 ***
#> year2012 0.03057329 0.02155042 1.41869 0.15599
#> year2013 0.15642915 0.02142306 7.30191 0.00000000000028372 ***
#> year2014 0.15686446 0.02141386 7.32537 0.00000000000023824 ***
#> year2015 0.23925807 0.02107722 11.35150 < 2.22e-16 ***
#> year2016 0.19448747 0.02111164 9.21233 < 2.22e-16 ***
#> year2017 0.23472074 0.02100701 11.17345 < 2.22e-16 ***
#> year2018 0.20006704 0.02101582 9.51983 < 2.22e-16 ***
#> year2019 0.17884706 0.02101990 8.50846 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0159 Deviance explained = 0.926%
#> -REML = -61292 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 6.133176478e+4
#> 3 AIC -1.226375296e+5
#> 4 BIC -1.225287827e+5
#> 5 deviance 3.310622465e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -1.591864228e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -9.885974847e-2
#> 2 mean((Intercept)) -2.999502603e+0
#> 3 year2009 1.447576844e-1
#> 4 year2010 1.937758873e-1
#> 5 year2011 8.340476459e-2
#> 6 year2012 3.057329042e-2
#> 7 year2013 1.564291540e-1
#> 8 year2014 1.568644566e-1
#> 9 year2015 2.392580691e-1
#> 10 year2016 1.944874677e-1
#> 11 year2017 2.347207432e-1
#> 12 year2018 2.000670429e-1
#> 13 year2019 1.788470608e-1
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(72.251)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.38640477 0.01011229 -235.99050 < 2.22e-16 ***
#> year2009 0.01240122 0.01410606 0.87914 0.37932
#> year2010 -0.05868963 0.01431967 -4.09853 4.1578e-05 ***
#> year2011 -0.10144465 0.01441618 -7.03686 1.9662e-12 ***
#> year2012 -0.20262047 0.01464463 -13.83582 < 2.22e-16 ***
#> year2013 -0.14515340 0.01457319 -9.96031 < 2.22e-16 ***
#> year2014 -0.15512159 0.01456849 -10.64775 < 2.22e-16 ***
#> year2015 -0.15588298 0.01455961 -10.70654 < 2.22e-16 ***
#> year2016 -0.18318271 0.01460994 -12.53822 < 2.22e-16 ***
#> year2017 -0.14812384 0.01453951 -10.18768 < 2.22e-16 ***
#> year2018 -0.11299046 0.01451904 -7.78223 7.1258e-15 ***
#> year2019 -0.13869570 0.01452353 -9.54972 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.036 Deviance explained = 2.34%
#> -REML = -42820 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.600156273e-2 weak cohen1988
#> 2 SE 2.565592159e-3 <NA> <NA>
#> 3 Lower CI 3.097309450e-2 weak cohen1988
#> 4 Upper CI 4.103003096e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.286366655e+4
#> 3 AIC -8.570133310e+4
#> 4 BIC -8.559837885e+4
#> 5 deviance 2.003054550e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 3.600156273e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.146590824e-1
#> 2 mean((Intercept)) -2.386404773e+0
#> 3 year2009 1.240121737e-2
#> 4 year2010 -5.868963325e-2
#> 5 year2011 -1.014446494e-1
#> 6 year2012 -2.026204683e-1
#> 7 year2013 -1.451534035e-1
#> 8 year2014 -1.551215863e-1
#> 9 year2015 -1.558829841e-1
#> 10 year2016 -1.831827111e-1
#> 11 year2017 -1.481238355e-1
#> 12 year2018 -1.129904588e-1
#> 13 year2019 -1.386957024e-1
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(52.212)
#> Link function: logit
#>
#> Formula:
#> beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.86640997 0.02671057 -69.87533 < 2.22e-16 ***
#> year2009 0.08173551 0.03687128 2.21678 0.02663815 *
#> year2010 0.04524564 0.03689117 1.22646 0.22002464
#> year2011 -0.02904872 0.03733563 -0.77804 0.43654365
#> year2012 -0.09208464 0.03773260 -2.44045 0.01466885 *
#> year2013 -0.04816000 0.03733637 -1.28990 0.19708708
#> year2014 -0.06393338 0.03747366 -1.70609 0.08799159 .
#> year2015 -0.13017766 0.03781844 -3.44217 0.00057706 ***
#> year2016 -0.14931515 0.03802615 -3.92664 0.000086139 ***
#> year2017 -0.11293230 0.03782711 -2.98549 0.00283128 **
#> year2018 -0.10408259 0.03789251 -2.74679 0.00601826 **
#> year2019 -0.11058879 0.03801898 -2.90878 0.00362844 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0327 Deviance explained = 2.94%
#> -REML = -4686.6 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 3.271189059e-2 weak cohen1988
#> 2 SE 6.639724773e-3 <NA> <NA>
#> 3 Lower CI 1.969826917e-2 very weak (negligible) cohen1988
#> 4 Upper CI 4.572551202e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.719121470e+3
#> 3 AIC -9.412242941e+3
#> 4 BIC -9.335197107e+3
#> 5 deviance 2.714505806e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 3.271189059e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.149793375e-1
#> 2 mean((Intercept)) -1.866409972e+0
#> 3 year2009 8.173551014e-2
#> 4 year2010 4.524564205e-2
#> 5 year2011 -2.904872441e-2
#> 6 year2012 -9.208463604e-2
#> 7 year2013 -4.816000369e-2
#> 8 year2014 -6.393338338e-2
#> 9 year2015 -1.301776573e-1
#> 10 year2016 -1.493151452e-1
#> 11 year2017 -1.129323015e-1
#> 12 year2018 -1.040825865e-1
#> 13 year2019 -1.105887918e-1
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = beipr_gam_6_by_misfs,
type = 6,
x_label = "Years",
y_label = "Predicted probability of BEIPR"
)
beipr_gam_6_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(mbepr_beipr_gam_6_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(17.202)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.08080565 0.02740893 -75.91707 < 2.22e-16 ***
#> year2009 0.19055073 0.03715369 5.12872 0.0000002917242204 ***
#> year2010 0.15908459 0.03728661 4.26653 0.0000198532878715 ***
#> year2011 0.07512878 0.03764546 1.99569 0.045967 *
#> year2012 0.02408713 0.03790746 0.63542 0.525155
#> year2013 0.15950743 0.03723322 4.28401 0.0000183555587381 ***
#> year2014 0.26091254 0.03673717 7.10214 0.0000000000012284 ***
#> year2015 0.17356083 0.03714285 4.67279 0.0000029713107767 ***
#> year2016 0.21454511 0.03703127 5.79362 0.0000000068885232 ***
#> year2017 0.16408621 0.03727622 4.40190 0.0000107306762664 ***
#> year2018 0.20961319 0.03705370 5.65701 0.0000000154032438 ***
#> year2019 0.20497947 0.03699936 5.54008 0.0000000302331853 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.011 Deviance explained = 1.35%
#> -REML = -9871.3 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 9.904385109e+3
#> 3 AIC -1.978277022e+4
#> 4 BIC -1.969204436e+4
#> 5 deviance 7.756093795e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -1.096589072e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.039580172e-2
#> 2 mean((Intercept)) -2.080805646e+0
#> 3 year2009 1.905507318e-1
#> 4 year2010 1.590845870e-1
#> 5 year2011 7.512878333e-2
#> 6 year2012 2.408713083e-2
#> 7 year2013 1.595074335e-1
#> 8 year2014 2.609125365e-1
#> 9 year2015 1.735608334e-1
#> 10 year2016 2.145451149e-1
#> 11 year2017 1.640862149e-1
#> 12 year2018 2.096131895e-1
#> 13 year2019 2.049794702e-1
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(16.45)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.31712574 0.01459629 -158.74759 < 2.22e-16 ***
#> year2009 0.15600119 0.02000904 7.79654 6.3629e-15 ***
#> year2010 0.16915137 0.01992975 8.48738 < 2.22e-16 ***
#> year2011 0.07958637 0.02018918 3.94203 8.0795e-05 ***
#> year2012 0.03616871 0.02030823 1.78099 0.074914 .
#> year2013 0.14323144 0.02023487 7.07845 1.4578e-12 ***
#> year2014 0.16235850 0.02017847 8.04612 8.5458e-16 ***
#> year2015 0.17061424 0.02004920 8.50978 < 2.22e-16 ***
#> year2016 0.13893044 0.02004608 6.93056 4.1919e-12 ***
#> year2017 0.14243165 0.02003915 7.10767 1.1802e-12 ***
#> year2018 0.10490315 0.02005155 5.23167 1.6798e-07 ***
#> year2019 0.08060366 0.02006139 4.01785 5.8731e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00237 Deviance explained = 0.56%
#> -REML = -44228 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.426792248e+4
#> 3 AIC -8.850984496e+4
#> 4 BIC -8.840109809e+4
#> 5 deviance 3.182959169e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -2.365279760e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -7.776208614e-2
#> 2 mean((Intercept)) -2.317125744e+0
#> 3 year2009 1.560011856e-1
#> 4 year2010 1.691513728e-1
#> 5 year2011 7.958636876e-2
#> 6 year2012 3.616870712e-2
#> 7 year2013 1.432314421e-1
#> 8 year2014 1.623584957e-1
#> 9 year2015 1.706142407e-1
#> 10 year2016 1.389304403e-1
#> 11 year2017 1.424316464e-1
#> 12 year2018 1.049031496e-1
#> 13 year2019 8.060366089e-2
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(32.314)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.62203590 0.01128229 -143.76834 < 2.22e-16 ***
#> year2009 0.01927930 0.01573038 1.22561 0.22034559
#> year2010 -0.05501702 0.01593038 -3.45359 0.00055317 ***
#> year2011 -0.09989673 0.01601573 -6.23741 0.00000000044487 ***
#> year2012 -0.22444470 0.01626701 -13.79754 < 2.22e-16 ***
#> year2013 -0.19058010 0.01628383 -11.70364 < 2.22e-16 ***
#> year2014 -0.18134686 0.01622227 -11.17889 < 2.22e-16 ***
#> year2015 -0.24526825 0.01638007 -14.97358 < 2.22e-16 ***
#> year2016 -0.21094895 0.01625574 -12.97689 < 2.22e-16 ***
#> year2017 -0.21671607 0.01630568 -13.29084 < 2.22e-16 ***
#> year2018 -0.21346543 0.01638834 -13.02545 < 2.22e-16 ***
#> year2019 -0.21544144 0.01631477 -13.20530 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0434 Deviance explained = 3.53%
#> -REML = -28928 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 4.335752981e-2 weak cohen1988
#> 2 SE 2.794039468e-3 <NA> <NA>
#> 3 Lower CI 3.788131308e-2 weak cohen1988
#> 4 Upper CI 4.883374654e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 2.897004590e+4
#> 3 AIC -5.791409181e+4
#> 4 BIC -5.781113756e+4
#> 5 deviance 1.982049212e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 4.335752981e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.879901788e-1
#> 2 mean((Intercept)) -1.622035897e+0
#> 3 year2009 1.927930472e-2
#> 4 year2010 -5.501702082e-2
#> 5 year2011 -9.989672552e-2
#> 6 year2012 -2.244446969e-1
#> 7 year2013 -1.905801023e-1
#> 8 year2014 -1.813468627e-1
#> 9 year2015 -2.452682543e-1
#> 10 year2016 -2.109489477e-1
#> 11 year2017 -2.167160681e-1
#> 12 year2018 -2.134654302e-1
#> 13 year2019 -2.154414446e-1
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(24.343)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.09220914 0.03064617 -35.63934 < 2.22e-16 ***
#> year2009 0.04616821 0.04265173 1.08245 0.27905426
#> year2010 -0.03670936 0.04280411 -0.85761 0.39110617
#> year2011 -0.11280096 0.04317714 -2.61252 0.00898785 **
#> year2012 -0.22979138 0.04380484 -5.24580 0.000000155606953 ***
#> year2013 -0.15380095 0.04325058 -3.55604 0.00037648 ***
#> year2014 -0.14568177 0.04325413 -3.36804 0.00075704 ***
#> year2015 -0.29194788 0.04397095 -6.63956 0.000000000031461 ***
#> year2016 -0.28216332 0.04400982 -6.41137 0.000000000144216 ***
#> year2017 -0.26159951 0.04393841 -5.95378 0.000000002620232 ***
#> year2018 -0.26558406 0.04410863 -6.02114 0.000000001731977 ***
#> year2019 -0.25983777 0.04417477 -5.88204 0.000000004052398 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0573 Deviance explained = 5.65%
#> -REML = -3039.2 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 5.729349284e-2 weak cohen1988
#> 2 SE 8.563879749e-3 <NA> <NA>
#> 3 Lower CI 4.050859696e-2 weak cohen1988
#> 4 Upper CI 7.407838871e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 3.069860234e+3
#> 3 AIC -6.113720467e+3
#> 4 BIC -6.036674633e+3
#> 5 deviance 2.685543298e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 5.729349284e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.571631576e-1
#> 2 mean((Intercept)) -1.092209142e+0
#> 3 year2009 4.616820983e-2
#> 4 year2010 -3.670936303e-2
#> 5 year2011 -1.128009579e-1
#> 6 year2012 -2.297913759e-1
#> 7 year2013 -1.538009465e-1
#> 8 year2014 -1.456817711e-1
#> 9 year2015 -2.919478833e-1
#> 10 year2016 -2.821633165e-1
#> 11 year2017 -2.615995078e-1
#> 12 year2018 -2.655840638e-1
#> 13 year2019 -2.598377727e-1
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mbepr_beipr_gam_6_by_misfs,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MBEPR & BEIPR"
)
mbepr_beipr_gam_6_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(maper_gam_6_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.761)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.69189376 0.03615554 -102.11142 < 2.22e-16 ***
#> year2009 0.09122742 0.04986873 1.82935 0.06734703 .
#> year2010 0.22634146 0.04929874 4.59122 0.0000044065745 ***
#> year2011 0.14027588 0.04960297 2.82797 0.00468437 **
#> year2012 0.09591483 0.04979698 1.92612 0.05408972 .
#> year2013 0.18389314 0.04940769 3.72195 0.00019769 ***
#> year2014 0.25367268 0.04906371 5.17027 0.0000002337548 ***
#> year2015 0.19574918 0.04932437 3.96861 0.0000722931747 ***
#> year2016 0.27178813 0.04910363 5.53499 0.0000000311244 ***
#> year2017 0.30595451 0.04897093 6.24768 0.0000000004166 ***
#> year2018 0.10464789 0.04979804 2.10145 0.03560184 *
#> year2019 0.07242936 0.04981757 1.45389 0.14597627
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0079 Deviance explained = 0.957%
#> -REML = -20717 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 2.074635089e+4
#> 3 AIC -4.146670177e+4
#> 4 BIC -4.137597591e+4
#> 5 deviance 8.433850322e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -7.903895660e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.458332730e-1
#> 2 mean((Intercept)) -3.691893762e+0
#> 3 year2009 9.122742359e-2
#> 4 year2010 2.263414641e-1
#> 5 year2011 1.402758760e-1
#> 6 year2012 9.591483318e-2
#> 7 year2013 1.838931362e-1
#> 8 year2014 2.536726770e-1
#> 9 year2015 1.957491799e-1
#> 10 year2016 2.717881343e-1
#> 11 year2017 3.059545102e-1
#> 12 year2018 1.046478886e-1
#> 13 year2019 7.242936354e-2
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.009)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -4.05354613 0.01869655 -216.80719 < 2.22e-16 ***
#> year2009 0.09788021 0.02600527 3.76386 0.00016731 ***
#> year2010 0.12848812 0.02589950 4.96103 7.0122e-07 ***
#> year2011 0.04325298 0.02606435 1.65947 0.09702129 .
#> year2012 0.04013462 0.02608028 1.53889 0.12383179
#> year2013 0.12026109 0.02623224 4.58448 4.5512e-06 ***
#> year2014 0.13745562 0.02619691 5.24702 1.5458e-07 ***
#> year2015 0.14778681 0.02603662 5.67611 1.3779e-08 ***
#> year2016 0.20454883 0.02584291 7.91508 2.4709e-15 ***
#> year2017 0.25107458 0.02577241 9.74199 < 2.22e-16 ***
#> year2018 0.06605114 0.02593643 2.54666 0.01087608 *
#> year2019 0.03303157 0.02591281 1.27472 0.20240838
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00248 Deviance explained = 0.544%
#> -REML = -1.0446e+05 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.044996352e+5
#> 3 AIC -2.089732704e+5
#> 4 BIC -2.088645236e+5
#> 5 deviance 3.427644493e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -2.481012795e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.319650464e-1
#> 2 mean((Intercept)) -4.053546129e+0
#> 3 year2009 9.788020571e-2
#> 4 year2010 1.284881180e-1
#> 5 year2011 4.325298314e-2
#> 6 year2012 4.013461922e-2
#> 7 year2013 1.202610933e-1
#> 8 year2014 1.374556199e-1
#> 9 year2015 1.477868125e-1
#> 10 year2016 2.045488276e-1
#> 11 year2017 2.510745771e-1
#> 12 year2018 6.605114196e-2
#> 13 year2019 3.303157362e-2
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(51.613)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.408513575 0.016886593 -201.84732 < 2.22e-16 ***
#> year2009 0.042954427 0.023451102 1.83166 0.06700221 .
#> year2010 0.096767078 0.023293388 4.15427 0.0000326324264 ***
#> year2011 0.078873109 0.023326080 3.38133 0.00072137 ***
#> year2012 -0.037792157 0.023661468 -1.59720 0.11022057
#> year2013 0.088124473 0.023341460 3.77545 0.00015972 ***
#> year2014 0.045458354 0.023448534 1.93864 0.05254473 .
#> year2015 -0.006662832 0.023624112 -0.28204 0.77791649
#> year2016 0.053338508 0.023360606 2.28327 0.02241462 *
#> year2017 -0.012634456 0.023649633 -0.53423 0.59317911
#> year2018 -0.144093365 0.024273710 -5.93619 0.0000000029172 ***
#> year2019 -0.109638973 0.024029463 -4.56269 0.0000050502521 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0109 Deviance explained = 1.15%
#> -REML = -50952 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 1.094496673e-2 very weak (negligible) cohen1988
#> 2 SE 1.451370507e-3 <NA> <NA>
#> 3 Lower CI 8.100332809e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.378960065e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 5.098980161e+4
#> 3 AIC -1.019536032e+5
#> 4 BIC -1.018506490e+5
#> 5 deviance 2.004505690e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 1.094496673e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.761516176e-1
#> 2 mean((Intercept)) -3.408513575e+0
#> 3 year2009 4.295442670e-2
#> 4 year2010 9.676707770e-2
#> 5 year2011 7.887310923e-2
#> 6 year2012 -3.779215735e-2
#> 7 year2013 8.812447254e-2
#> 8 year2014 4.545835361e-2
#> 9 year2015 -6.662831938e-3
#> 10 year2016 5.333850814e-2
#> 11 year2017 -1.263445648e-2
#> 12 year2018 -1.440933654e-1
#> 13 year2019 -1.096389733e-1
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(84.23)
#> Link function: logit
#>
#> Formula:
#> maper ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.434525093 0.038704222 -88.73774 < 2.22e-16 ***
#> year2009 0.033982608 0.053795474 0.63170 0.527583
#> year2010 -0.028244284 0.054120830 -0.52187 0.601758
#> year2011 -0.096589965 0.054803074 -1.76249 0.077986 .
#> year2012 -0.117281161 0.055012953 -2.13188 0.033016 *
#> year2013 0.003471375 0.053644187 0.06471 0.948404
#> year2014 -0.053131949 0.054252554 -0.97934 0.327410
#> year2015 -0.065479155 0.054261095 -1.20674 0.227531
#> year2016 -0.042010091 0.054142851 -0.77591 0.437801
#> year2017 -0.095929383 0.054737443 -1.75254 0.079682 .
#> year2018 -0.251238746 0.056535565 -4.44391 0.000008834 ***
#> year2019 -0.257736758 0.056737006 -4.54266 0.000005555 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0202 Deviance explained = 2.23%
#> -REML = -7542.3 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.021475971e-2 weak cohen1988
#> 2 SE 5.286966888e-3 <NA> <NA>
#> 3 Lower CI 9.852495026e-3 very weak (negligible) cohen1988
#> 4 Upper CI 3.057702440e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 7.570286498e+3
#> 3 AIC -1.511457300e+4
#> 4 BIC -1.503752716e+4
#> 5 deviance 2.705752165e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 2.021475971e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -3.670593835e-1
#> 2 mean((Intercept)) -3.434525093e+0
#> 3 year2009 3.398260776e-2
#> 4 year2010 -2.824428363e-2
#> 5 year2011 -9.658996493e-2
#> 6 year2012 -1.172811614e-1
#> 7 year2013 3.471375496e-3
#> 8 year2014 -5.313194948e-2
#> 9 year2015 -6.547915534e-2
#> 10 year2016 -4.201009064e-2
#> 11 year2017 -9.592938260e-2
#> 12 year2018 -2.512387463e-1
#> 13 year2019 -2.577367577e-1
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_gam_6_by_misfs,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MAPER"
)
maper_gam_6_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(mpepr_gam_6_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(31.103)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.62582314 0.03381049 -107.23960 < 2.22e-16 ***
#> year2009 0.03709332 0.04678136 0.79291 0.42783140
#> year2010 0.19467109 0.04598557 4.23331 0.000023027810392995 ***
#> year2011 0.17097103 0.04605697 3.71216 0.00020549 ***
#> year2012 0.10822804 0.04638477 2.33327 0.01963416 *
#> year2013 0.25702475 0.04560643 5.63571 0.000000017433585354 ***
#> year2014 0.16856564 0.04600552 3.66403 0.00024828 ***
#> year2015 0.34169192 0.04514264 7.56916 0.000000000000037564 ***
#> year2016 0.32731720 0.04530662 7.22449 0.000000000000502985 ***
#> year2017 0.39819008 0.04495368 8.85779 < 2.22e-16 ***
#> year2018 0.31330313 0.04537902 6.90414 0.000000000005050802 ***
#> year2019 0.17679795 0.04598024 3.84509 0.00012051 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0362 Deviance explained = 2.05%
#> -REML = -19442 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.947212870e+4
#> 3 AIC -3.891825739e+4
#> 4 BIC -3.882753153e+4
#> 5 deviance 8.411778743e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -3.620918501e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -9.433074914e-2
#> 2 mean((Intercept)) -3.625823139e+0
#> 3 year2009 3.709331543e-2
#> 4 year2010 1.946710948e-1
#> 5 year2011 1.709710272e-1
#> 6 year2012 1.082280369e-1
#> 7 year2013 2.570247511e-1
#> 8 year2014 1.685656423e-1
#> 9 year2015 3.416919159e-1
#> 10 year2016 3.273172011e-1
#> 11 year2017 3.981900819e-1
#> 12 year2018 3.133031313e-1
#> 13 year2019 1.767979519e-1
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(25.906)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.87698948 0.01801987 -215.15081 < 2.22e-16 ***
#> year2009 0.10877974 0.02499283 4.35244 1.3463e-05 ***
#> year2010 0.15731129 0.02484095 6.33274 2.4084e-10 ***
#> year2011 0.08050945 0.02503152 3.21632 0.0012984 **
#> year2012 0.04868841 0.02510033 1.93975 0.0524099 .
#> year2013 0.05472442 0.02534252 2.15939 0.0308198 *
#> year2014 0.07020751 0.02530395 2.77457 0.0055275 **
#> year2015 0.14517931 0.02502139 5.80221 6.5447e-09 ***
#> year2016 0.25393209 0.02470121 10.28015 < 2.22e-16 ***
#> year2017 0.37762169 0.02444039 15.45073 < 2.22e-16 ***
#> year2018 0.20054394 0.02471163 8.11537 4.8433e-16 ***
#> year2019 0.15884431 0.02473039 6.42304 1.3358e-10 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00743 Deviance explained = 1.15%
#> -REML = -90887 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 9.092481949e+4
#> 3 AIC -1.818236390e+5
#> 4 BIC -1.817148921e+5
#> 5 deviance 3.487532075e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -7.427616944e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.850539438e-1
#> 2 mean((Intercept)) -3.876989476e+0
#> 3 year2009 1.087797385e-1
#> 4 year2010 1.573112884e-1
#> 5 year2011 8.050945306e-2
#> 6 year2012 4.868841168e-2
#> 7 year2013 5.472441806e-2
#> 8 year2014 7.020750818e-2
#> 9 year2015 1.451793123e-1
#> 10 year2016 2.539320903e-1
#> 11 year2017 3.776216889e-1
#> 12 year2018 2.005439360e-1
#> 13 year2019 1.588443050e-1
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(87.973)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.371412963 0.013565837 -248.52229 < 2.22e-16 ***
#> year2009 0.025612204 0.018876649 1.35682 0.17483858
#> year2010 0.089615821 0.018687209 4.79557 0.000001622127 ***
#> year2011 0.094320584 0.018645222 5.05870 0.000000422124 ***
#> year2012 0.100801844 0.018552323 5.43338 0.000000055296 ***
#> year2013 0.073971800 0.018754045 3.94431 0.000080029524 ***
#> year2014 0.029271255 0.018869216 1.55127 0.12083690
#> year2015 0.054841548 0.018767180 2.92221 0.00347563 **
#> year2016 0.070027834 0.018681384 3.74854 0.00017787 ***
#> year2017 0.019208516 0.018893706 1.01666 0.30931416
#> year2018 0.001710287 0.019054804 0.08976 0.92848093
#> year2019 -0.053550519 0.019166898 -2.79391 0.00520755 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.00809 Deviance explained = 0.688%
#> -REML = -53470 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 8.093105311e-3 very weak (negligible) cohen1988
#> 2 SE 1.251639090e-3 <NA> <NA>
#> 3 Lower CI 5.639937773e-3 very weak (negligible) cohen1988
#> 4 Upper CI 1.054627285e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 5.351150485e+4
#> 3 AIC -1.069970097e+5
#> 4 BIC -1.068940554e+5
#> 5 deviance 2.017974368e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 8.093105311e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.387984823e-1
#> 2 mean((Intercept)) -3.371412963e+0
#> 3 year2009 2.561220416e-2
#> 4 year2010 8.961582137e-2
#> 5 year2011 9.432058384e-2
#> 6 year2012 1.008018444e-1
#> 7 year2013 7.397179963e-2
#> 8 year2014 2.927125538e-2
#> 9 year2015 5.484154797e-2
#> 10 year2016 7.002783387e-2
#> 11 year2017 1.920851598e-2
#> 12 year2018 1.710287479e-3
#> 13 year2019 -5.355051889e-2
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(117.623)
#> Link function: logit
#>
#> Formula:
#> mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.32141304 0.03214613 -103.32232 < 2e-16 ***
#> year2009 0.05759784 0.04445372 1.29568 0.195085
#> year2010 0.05320486 0.04426187 1.20205 0.229345
#> year2011 -0.06310094 0.04528226 -1.39350 0.163468
#> year2012 0.03727906 0.04439777 0.83966 0.401099
#> year2013 0.08400974 0.04387130 1.91491 0.055504 .
#> year2014 0.02121784 0.04444479 0.47740 0.633079
#> year2015 0.01473267 0.04441036 0.33174 0.740086
#> year2016 0.03800192 0.04430125 0.85781 0.390999
#> year2017 -0.02280729 0.04487438 -0.50825 0.611280
#> year2018 -0.08232164 0.04555579 -1.80705 0.070754 .
#> year2019 -0.08903243 0.04571826 -1.94742 0.051485 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.00546 Deviance explained = 1.33%
#> -REML = -7566.8 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 5.458795517e-3 very weak (negligible) cohen1988
#> 2 SE 2.788769371e-3 <NA> <NA>
#> 3 Lower CI -7.092011279e-6 no effect cohen1988
#> 4 Upper CI 1.092468305e-2 very weak (negligible) cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 7.597365316e+3
#> 3 AIC -1.516873063e+4
#> 4 BIC -1.509168480e+4
#> 5 deviance 2.718494668e+3
#> 6 df.residual 2.758 e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 5.458795517e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.727192850e-1
#> 2 mean((Intercept)) -3.321413038e+0
#> 3 year2009 5.759784332e-2
#> 4 year2010 5.320485569e-2
#> 5 year2011 -6.310094150e-2
#> 6 year2012 3.727906148e-2
#> 7 year2013 8.400973673e-2
#> 8 year2014 2.121783840e-2
#> 9 year2015 1.473267072e-2
#> 10 year2016 3.800192006e-2
#> 11 year2017 -2.280729233e-2
#> 12 year2018 -8.232164491e-2
#> 13 year2019 -8.903242933e-2
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = mpepr_gam_6_by_misfs,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MPEPR"
)
mpepr_gam_6_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
summarise_gam_misfs(maper_mpepr_gam_6_by_misfs)
#>
#> ── Model A ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(23.539)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.863762847 0.030416313 -94.15220 < 2.22e-16 ***
#> year2009 0.002530356 0.042231157 0.05992 0.9522219
#> year2010 0.163563687 0.041353669 3.95524 0.0000764578584 ***
#> year2011 0.124535353 0.041518057 2.99955 0.0027038 **
#> year2012 0.107157267 0.041625158 2.57434 0.0100432 *
#> year2013 0.200257644 0.041103161 4.87207 0.0000011043276 ***
#> year2014 0.163105950 0.041256803 3.95343 0.0000770382914 ***
#> year2015 0.188558211 0.041136809 4.58369 0.0000045685023 ***
#> year2016 0.213264848 0.041090556 5.19012 0.0000002101605 ***
#> year2017 0.237457486 0.040977146 5.79488 0.0000000068372 ***
#> year2018 0.084345817 0.041776517 2.01898 0.0434896 *
#> year2019 0.005959200 0.042106384 0.14153 0.8874534
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.0105 Deviance explained = 1.21%
#> -REML = -14641 Scale est. = 1 n = 7934
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 1.467225123e+4
#> 3 AIC -2.931850246e+4
#> 4 BIC -2.922777659e+4
#> 5 deviance 8.012581771e+3
#> 6 df.residual 7.922 e+3
#> 7 nobs 7.93400 e+3
#> 8 adj.r.squared -1.046017779e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.144189191e-1
#> 2 mean((Intercept)) -2.863762847e+0
#> 3 year2009 2.530355910e-3
#> 4 year2010 1.635636871e-1
#> 5 year2011 1.245353533e-1
#> 6 year2012 1.071572667e-1
#> 7 year2013 2.002576435e-1
#> 8 year2014 1.631059500e-1
#> 9 year2015 1.885582114e-1
#> 10 year2016 2.132648477e-1
#> 11 year2017 2.374574859e-1
#> 12 year2018 8.434581664e-2
#> 13 year2019 5.959200495e-3
#>
#> ── Model B ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(18.318)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.22294516 0.01732431 -186.03595 < 2.22e-16 ***
#> year2009 0.11971504 0.02395965 4.99653 0.00000058372166 ***
#> year2010 0.15009620 0.02383549 6.29717 0.00000000030312 ***
#> year2011 0.03535440 0.02412842 1.46526 0.142850
#> year2012 0.02856854 0.02415370 1.18278 0.236896
#> year2013 0.03868681 0.02437592 1.58709 0.112492
#> year2014 0.05914037 0.02432167 2.43159 0.015033 *
#> year2015 0.09944464 0.02409824 4.12663 0.00003681107791 ***
#> year2016 0.20107932 0.02377157 8.45882 < 2.22e-16 ***
#> year2017 0.31640490 0.02350747 13.45976 < 2.22e-16 ***
#> year2018 0.08533299 0.02393219 3.56562 0.000363 ***
#> year2019 0.04507955 0.02395628 1.88174 0.059871 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = -0.00293 Deviance explained = 0.958%
#> -REML = -69447 Scale est. = 1 n = 31734
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 0 no effect cohen1988
#> 2 SE 0 <NA> <NA>
#> 3 Lower CI 0 no effect cohen1988
#> 4 Upper CI 0 no effect cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 6.948485640e+4
#> 3 AIC -1.389437128e+5
#> 4 BIC -1.388349659e+5
#> 5 deviance 3.380460192e+4
#> 6 df.residual 3.1722 e+4
#> 7 nobs 3.1734 e+4
#> 8 adj.r.squared -2.933590148e-3
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -1.703368677e-1
#> 2 mean((Intercept)) -3.222945165e+0
#> 3 year2009 1.197150374e-1
#> 4 year2010 1.500961951e-1
#> 5 year2011 3.535439902e-2
#> 6 year2012 2.856854377e-2
#> 7 year2013 3.868681223e-2
#> 8 year2014 5.914036959e-2
#> 9 year2015 9.944464361e-2
#> 10 year2016 2.010793199e-1
#> 11 year2017 3.164048959e-1
#> 12 year2018 8.533298721e-2
#> 13 year2019 4.507954885e-2
#>
#> ── Model C ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(47.029)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.60735423 0.01328347 -196.28559 < 2.22e-16 ***
#> year2009 0.02135162 0.01850311 1.15395 0.24852164
#> year2010 0.04981589 0.01844381 2.70095 0.00691407 **
#> year2011 0.04486920 0.01843335 2.43413 0.01492754 *
#> year2012 0.01463898 0.01845685 0.79315 0.42769265
#> year2013 0.02003883 0.01855254 1.08011 0.28009207
#> year2014 -0.03307472 0.01868558 -1.77007 0.07671606 .
#> year2015 -0.04951833 0.01872640 -2.64431 0.00818587 **
#> year2016 -0.01531973 0.01857922 -0.82456 0.40962004
#> year2017 -0.06723362 0.01878823 -3.57850 0.00034558 ***
#> year2018 -0.15569399 0.01919680 -8.11041 5.0449e-16 ***
#> year2019 -0.15251919 0.01909421 -7.98772 1.3746e-15 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0206 Deviance explained = 1.49%
#> -REML = -40563 Scale est. = 1 n = 20324
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.062532839e-2 weak cohen1988
#> 2 SE 1.972876581e-3 <NA> <NA>
#> 3 Lower CI 1.675856135e-2 very weak (negligible) cohen1988
#> 4 Upper CI 2.449209544e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 4.060348116e+4
#> 3 AIC -8.118096232e+4
#> 4 BIC -8.107800807e+4
#> 5 deviance 1.989046593e+4
#> 6 df.residual 2.03120000 e+4
#> 7 nobs 2.0324 e+4
#> 8 adj.r.squared 2.062532839e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.441666065e-1
#> 2 mean((Intercept)) -2.607354231e+0
#> 3 year2009 2.135162391e-2
#> 4 year2010 4.981589248e-2
#> 5 year2011 4.486920362e-2
#> 6 year2012 1.463898342e-2
#> 7 year2013 2.003882704e-2
#> 8 year2014 -3.307472484e-2
#> 9 year2015 -4.951833157e-2
#> 10 year2016 -1.531972766e-2
#> 11 year2017 -6.723361692e-2
#> 12 year2018 -1.556939854e-1
#> 13 year2019 -1.525191913e-1
#>
#> ── Model D ──────────────────────────────────────────────────────────────────
#>
#> Family: Beta regression(61.083)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.62777080 0.03269868 -80.36322 < 2.22e-16 ***
#> year2009 0.03742959 0.04542070 0.82406 0.409903
#> year2010 0.01671577 0.04535227 0.36858 0.712444
#> year2011 -0.09893826 0.04632765 -2.13562 0.032710 *
#> year2012 -0.02434035 0.04569124 -0.53271 0.594232
#> year2013 0.02536456 0.04514336 0.56187 0.574207
#> year2014 -0.04734035 0.04578803 -1.03390 0.301182
#> year2015 -0.05697712 0.04577360 -1.24476 0.213220
#> year2016 -0.03688130 0.04570034 -0.80702 0.419652
#> year2017 -0.08763337 0.04617991 -1.89765 0.057742 .
#> year2018 -0.20504775 0.04738514 -4.32726 0.000015098 ***
#> year2019 -0.20485571 0.04749209 -4.31347 0.000016071 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> R-sq.(adj) = 0.0212 Deviance explained = 2.44%
#> -REML = -5872.4 Scale est. = 1 n = 2770
#>
#> # A tibble: 4 × 4
#> name value interpretation rule
#> <chr> <dbl> <chr> <chr>
#> 1 R2 2.117818155e-2 weak cohen1988
#> 2 SE 5.406166049e-3 <NA> <NA>
#> 3 Lower CI 1.058229080e-2 very weak (negligible) cohen1988
#> 4 Upper CI 3.177407230e-2 weak cohen1988
#>
#> # A tibble: 9 × 2
#> name value
#> <chr> <dbl>
#> 1 df 1.200000000e+1
#> 2 logLik 5.902573955e+3
#> 3 AIC -1.177914791e+4
#> 4 BIC -1.170210208e+4
#> 5 deviance 2.706397613e+3
#> 6 df.residual 2.758000000e+3
#> 7 nobs 2.77 e+3
#> 8 adj.r.squared 2.117818155e-2
#> 9 npar 1.2 e+1
#>
#> # A tibble: 13 × 2
#> name value
#> <chr> <dbl>
#> 1 [Mean] -2.758562571e-1
#> 2 mean((Intercept)) -2.627770803e+0
#> 3 year2009 3.742958826e-2
#> 4 year2010 1.671576674e-2
#> 5 year2011 -9.893825793e-2
#> 6 year2012 -2.434034555e-2
#> 7 year2013 2.536456418e-2
#> 8 year2014 -4.734034611e-2
#> 9 year2015 -5.697712363e-2
#> 10 year2016 -3.688129754e-2
#> 11 year2017 -8.763337466e-2
#> 12 year2018 -2.050477495e-1
#> 13 year2019 -2.048557068e-1
Code
dplyr::mutate(data, year = factor(year, ordered = FALSE)) |>
dplyr::mutate(
dplyr::across(
.cols = dplyr::matches("^year$"),
.fns = ~ .x |> as.character() |> as.numeric()
)
) |>
plot_gam_misfs(
gam_models = maper_mpepr_gam_6_by_misfs,
type = 6,
x_label = "Years",
y_label = "Predicted probability of MAPER & MPEPR"
)
maper_mpepr_gam_6_by_misfs
model. Shaded areas indicates the pointwise 95% prediction confidence interval, while the faded dots in the background represent the observed data.
Testing the Hypothesis
The rationale behind the test can be found in the Methods section.
The hypothesis test was designed as follows:
\[ \begin{cases} \text{H}_{0}: \Delta \ \text{Adjusted} \ \text{R}^{2} \leq \text{MES} \quad \text{or} \quad \text{F-test is not significant} \ (\alpha \geq 0.05) \\ \text{H}_{a}: \Delta \ \text{Adjusted} \ \text{R}^{2} > \text{MES} \quad \text{and} \quad \text{F-test is significant} \ (\alpha < 0.05) \end{cases} \]
The restricted model is identical to the first model presented in this document, except for the exclusion of the SPEI variable: ~ te(gini_index, gdp_per_capita)
+ s(year)
(Continuous year
).
MBEPR & BEIPR – Very Short/Short Stature for Age (Muito Baixa/Baixa Estatura Para Idade)
Code
mbepr_beipr_restricted <- mgcv::gam(
mbepr_beipr ~ te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mbepr_beipr_restricted |> summary()
#>
#> Family: Beta regression(21.137)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.008473080 0.002583373 -777.4616 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> te(gini_index,gdp_per_capita) 19.151555 19.984101 14818.0796 < 2.22e-16 ***
#> s(year) 8.604492 8.954247 644.6073 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.163 Deviance explained = 21.9%
#> -REML = -79093 Scale est. = 1 n = 57487
Code
adj_r_squared_restricted <-
mbepr_beipr_restricted |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
)
adj_r_squared_restricted|> md_named_tibble()
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.1629686593 | moderate | cohen1988 |
SE | 0.0026973501 | NA | NA |
Lower CI | 0.1576819503 | moderate | cohen1988 |
Upper CI | 0.1682553683 | moderate | cohen1988 |
Code
mbepr_beipr_full <- mgcv::gam(
mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
mbepr_beipr_full |> summary()
#>
#> Family: Beta regression(21.15)
#> Link function: logit
#>
#> Formula:
#> mbepr_beipr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.008487621 0.002582764 -777.6504 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 7.128848 8.202065 34.50121 0.000032104
#> te(gini_index,gdp_per_capita) 19.170675 19.998225 13833.01156 < 2.22e-16
#> s(year) 8.629334 8.958357 543.76224 < 2.22e-16
#>
#> s(spei_12m) ***
#> te(gini_index,gdp_per_capita) ***
#> s(year) ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.163 Deviance explained = 22%
#> -REML = -79097 Scale est. = 1 n = 57487
Code
adj_r_squared_full <-
mbepr_beipr_full |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
)
adj_r_squared_full|> md_named_tibble()
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.1626124024 | moderate | cohen1988 |
SE | 0.0026955040 | NA | NA |
Lower CI | 0.1573293116 | moderate | cohen1988 |
Upper CI | 0.1678954933 | moderate | cohen1988 |
stats::anova(mbepr_beipr_restricted, mbepr_beipr_full, test = "F")
Code
effect_size <- cohens_f_squared_summary(
adj_r_squared_restricted,
adj_r_squared_full
)
effect_size |> list_as_tibble()
MAPER & MPEPR – Severe/Moderate Thinness for Height (Magreza Acentuada/Moderada Para a Estatura)
Code
maper_mpepr_restricted <- mgcv::gam(
maper_mpepr ~ te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
maper_mpepr_restricted |> summary()
#>
#> Family: Beta regression(27.019)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ te(gini_index, gdp_per_capita) + s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.945847077 0.003083574 -955.3353 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> te(gini_index,gdp_per_capita) 18.626006 19.439367 14570.926 < 2.22e-16 ***
#> s(year) 8.570873 8.946917 1232.193 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.0568 Deviance explained = 22.7%
#> -REML = -1.19e+05 Scale est. = 1 n = 57487
Code
adj_r_squared_restricted <-
maper_mpepr_restricted |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
)
adj_r_squared_restricted|> md_named_tibble()
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0567917340 | weak | cohen1988 |
SE | 0.0017942944 | NA | NA |
Lower CI | 0.0532749815 | weak | cohen1988 |
Upper CI | 0.0603084865 | weak | cohen1988 |
Code
maper_mpepr_full <- mgcv::gam(
maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) + s(year),
data = dplyr::mutate(data, year = as.integer(as.character(year))),
family = mgcv::betar(link = "logit"),
method = "REML"
)
maper_mpepr_full |> summary()
#>
#> Family: Beta regression(27.286)
#> Link function: logit
#>
#> Formula:
#> maper_mpepr ~ s(spei_12m) + te(gini_index, gdp_per_capita) +
#> s(year)
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.947655546 0.003075965 -958.2864 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(spei_12m) 8.538532 8.941460 524.1370 < 2.22e-16 ***
#> te(gini_index,gdp_per_capita) 18.824892 19.596732 12360.7378 < 2.22e-16 ***
#> s(year) 8.805392 8.988451 658.9538 < 2.22e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.059 Deviance explained = 23.5%
#> -REML = -1.1924e+05 Scale est. = 1 n = 57487
Code
adj_r_squared_full <-
maper_mpepr_full |>
summarise_r2(
dplyr::mutate(data, year = as.integer(as.character(year))) |>
nrow()
)
adj_r_squared_full|> md_named_tibble()
Value | Interpretation | Rule | |
---|---|---|---|
R2 | 0.0589991868 | weak | cohen1988 |
SE | 0.0018245243 | NA | NA |
Lower CI | 0.0554231850 | weak | cohen1988 |
Upper CI | 0.0625751886 | weak | cohen1988 |
stats::anova(maper_mpepr_restricted, maper_mpepr_full, test = "F")
Code
effect_size <- cohens_f_squared_summary(
adj_r_squared_restricted,
adj_r_squared_full
)
effect_size |> list_as_tibble()
Conclusion
Does the Standardized Precipitation Evapotranspiration Index (SPEI) significantly improve the prediction of childhood undernutrition in Brazilian municipalities?
Our analysis show that the SPEI does not significantly improve the prediction of childhood undernutrition in Brazilian municipalities. The adjusted R-squared values indicate that the inclusion of the SPEI in the models does not significantly improve the prediction of the nutritional status of children under five years old in the municipalities.
Acknowledgments
This analysis is part of the Sustentarea Research and Extension Group’s project: Global syndemic: the impact of anthropogenic climate change on the health and nutrition of children under five years old attended by Brazil’s public health system (SUS).
This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil (CNPq).
How to Cite
To cite this work, please use the following format:
Magalhães, A. R., Vartanian, D, & Carvalho, A. M. (2025). Global syndemic project data analysis: Report 3: Exploring potential associations between childhood undernutrition and the Standardized Precipitation Evapotranspiration Index (SPEI) in Brazilian municipalities (2008–2019). Sustentarea Research and Extension Group at the University of São Paulo. https://sustentarea.github.io/gs-data-analysis-report-3
A BibTeX entry for LaTeX users is
@techreport{magalhaes2025,
title = {Global syndemic project data analysis: Report 3: Exploring potential associations between childhood undernutrition and the Standardized Precipitation Evapotranspiration Index (SPEI) in Brazilian municipalities (2008–2019)},
author = {{Arthur Ramalho Magalhães} and {Daniel Vartanian} and {Aline Martins de Carvalho}},
year = {2025},
address = {São Paulo},
institution = {Sustentarea Research and Extension Group at the University of São Paulo},
langid = {en},
url = {https://sustentarea.github.io/gs-data-analysis-report-3}
}